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CHAPTER 1

INTRODUCTION

I.1. Perfect codes

One of the main aims of algebraic coding theory is to comstruct "good"
"codes". These objects can be, and are, widely used in all sorts of communi-
cation systems, including satellite communication, telemetry, television,
radar, wagnetic tape, etc. etc. All these links have one thing in common,
that being that a sender tries to transmit information to a receiver, but
that during transmission errors are unavoidable.

Already since the time of papertape, it has been known that it is ad-
visable to transmit more symbols than are strictly necessary. Thus only a
small part of all thinkable strings is legitimate. Assuming that a message
is encoded as a string consisting of a fixed mumber of symbols chosen from
some fixed alphabet, the collection of legitimate strings is called a (block)
code; a legitimate string is called a codeword.

If only a limited amount of energy is available for the transmission of
the message, the redundancy in the message decreases the available amount
of energy per symbol, thus increasing the a priori symbol error probability.
On the other hand, the same redundancy enables the receiver to detect, or
even correct, many error patterns: he selects that codeword which is "closest"
to the received string. Usually, this will result in a nett reduction of the
symbol error probability. It will be intuitively clear that in a "good" code
the codewords should not be too close to each other: two close codewords can
easily be confused.

In order to specify the concept of closeness, a distance function be-
tween two strings is introduced. This (Hamming) distance is defined as the
number of symbols by which two strings differ.

Consider, as an example, the code consisting of only two codewords,
00000 and 11111. Each codeword consists of five bits (zeros or ones). It

is therefore called a binary code of block length five. It will be obvious



that ~ as long as a codeword is not corrupted by more than two errors - the
receiver is able to reconstruct the transmitted codeword by "majority vote".
For this reason, the code is called 2-error correcting. Geometrically, this
means that the spheres with radius two around the codewords do not intersect.
Each such sphere consists of the relevant codeword, together with all strings
at distances one or two from the codeword.

A pecularity of the exemplary code is that not a single pattern of three
or more errors can be corrected or even detected properly. This means that
there is no room between the previously mentioned spheres. For this reason,
the code is called 2-perfect. In general, a code is called t-perfect if the
spheres with radius t around the codewords form a partitioning of the space
of all thinkable strings of the relevant length over the relevant alphabet.

Trivial examples of t-perfect codes are the codes consisting of only
one codeword of length at most t, and the binary repetition codes of block-
length 2t+1, consisting of two codewords at distance 2t+] apart. The codes
consisting of gll strings of a certain length over a certain alphabet are
obviously O-perfect.

Apart from these silly codes, an infinite class of I-perfect codes was
described by R.W. HAMMING in 1950 (cf. [8]). These codes contain 2™T code-
words of length n = 2Y-1. The smallest nontrivial example (r=3, n=7) con-
sists of the codewords 0000000, 1101000, 0010111, 1111111, and all cyclic
shifts. Furthermore, a 3-perfect binary code consisting of 4096 codewords
of length 23 was discovered by M.J.E. GO%AY in 1949 (cf. [7]). No more per-

*

fect binary codes could be discovered. Building on the work of
J.H. van LINT (cf.[15]), A. TIETAVAINEN & A. PERKO [30] succeeded in proving
that no more perfect binary codes existed indeed.

The class of Hamming codes is not confined to binary codes. For each
alphabet with q symbols, q being a power of a prime, and each positive inte-
ger r, a l-perfect code exists containing qn—r codewords of length n =
(qr—l)/(q-l). The smallest nontrivial example (q=3, r=2, n=4) is the ternary
code consisting of the codewords 0000, Ol111, 0222, 1012, 1120, 1201, 2021,
2102, 2210. Apart from this class, M.J.E. GOLAY also discovered a ternary
2-perfect code consisting of 729 codewords of length 11 (cf. [7]). No more

perfect codes could te discovered.*)

*) Strictly speaking, this is not true: many l-perfect codes have been dis-
covered which have the same parameters as the Hamming codes, but are not
equivalent to the Hamming codes. This holds for binary as well as for non-
binary codes (ef. [31], [24], [11] and [33]).



After this poor yield, several researchers tried to prove that no more
t-perfect codes over arbitrary alphabets existed indeed. The principal tools
available for such nonexistence proofs are the "sphere packing condition”,
and "Lloyd's theorem". The sphere packing condition expresses that the num-
ber of strings in a sphere with radius t should be a divisor of the total
number of strings; Lloyd's theorem relates the existence of a perfect code
to the integrality of the zeros of a certain polynomial of degree t.

The nonexistence proof of unknown perfect binary codes was based on a
combination of both tools. This technique has been refined and generalized
in several papers ([12], (271, (131, [141, C15J, (28], L17], [291, (21, [9]).
The limitation of this proof technique is the use of the sphere packing con-
dition. This divisibility criterion becomes weaker and weaker accordingly as
the alphabet size gets more prime divisors. Therefore, a general nonexistence
proof cannot be expected in this way.

The first nonexistence proof of perfect codes over arbitrary alphabets
was published by H.F.H. REUVERS [22], who proved that unknown 3-, 4-, and
5~ perfect codes do not exist. Later, E. BANNAI [1] proved that for any
fixed t 2 3 the number of t-perfect codes is finite. This was improved by
M.R. BEST [4], who showed that the total number of unknown perfect codes
correcting at least three errors is finite.

In this treatise, it will be proved that unknown perfect codes do not
exist at all for t 2 3, unless t = 6 or t = 8. Although the general "Perfect
Code Theorem" - which states that no t-perfect codes exist apart from the
known ones — could not be proved, the proof becomes apparent for the case
t =2 3, For the cases t = | and t = 2, the techniques developed in this thesis

do not apply.

1.2. An outline of the proof

The discussion in this section is meant to give some insight into the
main lines of the proof of the perfect code theorem, as will be attempted
in this treatise. This discussion will be very informal, and should not be
judged according to mathematical rigour. We hope it will give the reader
a guided tour through the lengthy, but (hopefully) mathematically rigourous
derivations in the subsequent chapters.

The theorem that will be proved is formulated in Chapter 9. It claims
that no unknown t-perfect codes exist, unless t equals 1, 2, 6, or 8. These

four exceptional cases are also discussed briefly in Chapter 9.



In the proof, two cases are distinguished: Chapters 5, 6, and 7 deal
with the case of a relatively large block length, while Chapter 8 treats
the case of a relatively small block length.

The proof of either case makes use of "Lloyd's theorem", which states
that the existence of a certain t-perfect code implies that all zeros of a
certain Kraveuk polynomial Kt are integral. S.P. LLOYD, in fact, proved this
theorem only for linear binary codes. It was generalized by F.J. McWILLIAMS,
P. DELSARTE, and H.W. LENSTRA jr. to general codes. This generalization,
as well as other known results applying to perfect codes, is discussed in
Chapter 4.

The exact definition of the Kravouk polynomial K can be found in
Chapter 3. In that chapter, the relevant properties of Kravguk polynomials
will also be derived. Chapter 2 contains a rather incoherent collection of

notations and auxiliary results.

Consider, as an example, a t-perfect code with t odd (t = 5). The exis-
. v . .
tence of such a code implies that a certain Kravcuk polynomial Kt has inte-
gral zeros. The graph of Kt is sketched below

107-

T T T T 1

40 50 60 70 80 90

The graph of K_ for t=7, n=100, q=3.

Here n equals the block length of the code decreased by one, and q

denotes the alphabet size. For large values of the paraweter n, the



graph tends - after some scaling — to that of a Hermite polynomial. This
fact was used by E. BANNAI to prove that for each fized value of t only
finitely many t-perfect codes exist. In his proof, the crucial observation
is tnat the zeros of Kt are grouped almost symmetrically around a central
of this central

zero vg. In particular, the two adjacent zeros v, and v_

1 1

zero are almost equidistant from vy
In this treatise, the last statement will be specified precisely:

0 < (vo—vl) - (v_l-vo) < 1

for n larger than some well defined bound. This clearly contradicts the in-

tegrality of Vis Vg Or V_;.

In order to prove the above inequality, the Kravouk polynomial Kt is
studied in detail in the neighbourhood of vy This is done in three steps:
1. First, v is estimated by expanding K. in a neighbourhood of (q-1)n/q.

This is done in Chapter 5.

2. Second, the (scaled) Kravouk polynomial is approximated by an ordinary
sine function (instead of a Hermite polynomial) in the neighbourhood of
Vo Thisvis performed by using a difference equation (Lemma 3.3.1), valid
for Kravcuk polynomials. This leads to a coarse estimate for the distance
of consecutive zeros of Kravguk polynomials (Lemma 6.3.1).

3. Third, the Kraveuk polynomial is compared to its own mirror-image with
respect to v,. Here again, the difference equation is employed. Since
the scaled polynomial is almost antisymmetric around Vgs the difference
equation is almost invariant under this reflection. This will enable us
in Section 6.3 to estimate (vo—vl) - (v_l-vo) with the promised accuracy.

In this example, t was chosen to be odd. In case t is even, there is
no "central" zero. There is, however, some centre, close to (q-1)n/q, with
respect to which the zeros of Kt are situated almost symmetrically. Similar

to the odd case, it is possible to prove that
0 < (vy=vy) = (v_,v_) <1,

where Vos Vs V_i» and V.o denote the four zeros surrounding this centre,
in increasing order. This gives rise to several technical complications,
which are dealt with in Chapter 7.

Finally, perfect codes with a relatively short block length will be

ruled out by a system of divisibility relations (Lemma 8.1.1), which gen-



eralizes many formulas expressing that the product, the sum, the sum of the
squares, etc., of the zeros of Lloyd's polynomial are integers. This system
is very restrictive for not too large values of the block length. Without

much effort, the nonexistence of such perfect codes can be shown.



CHAPTER 2

PRELIMINARIES

In this chapter, a number of notations are introduced and several re-

sults are derived which will be used in the subsequent chapters.
2.1. Notations

Some notations are listed below which will be used throughout this
treatise, and which might be non-standard. In this section, a and b are real

numbers, while j and k are integers.
N denotes the natural numbers, including zero.
IC| denotes the cardinality of the set C.

(a,b], (a,bl, [a,b), and (a,b) denote closed, left-open, right-open, and

open real intervals.

(a,1,b], (a,!,b], [a,1,b), and (a,1,b) denote the corresponding real inter-

vals, intersected by Z + a. E.g.
(a,1,b] = {xlx € (a,b] A x-a ¢ Z}.

Weakly positive means positive or zero. (The author abhors the double nega-

tion "non-negative'.) Likewise, weakly negative means negative or zero.
Increasing and decreasing are used in the weak sense.

|a] denotes the greatest integer less than or equal to a.

[a] denotes the least integer greater than or equal to a.

alb means that b is an integral multiple of a.

lem(a,b) denotes the least positive real number that is an integral multiple

of both a and b, provided such a number exists. Otherwise, lcm(a,b) = O.

b a
If a > b, then ft=af dt is defined as - ft=bf dt.



log denotes the natural logarithm.

a! denotes T'(a+l), where I' is Euler's gamma function.

K&

v

denotes Hi;é (a+i) if j 0.

v

b it ST
a(j) denotes Hi=0 (a-i) if j 0.

a sy sl s . a
.) denot . ! if j 2 0; oth .) = 0.
(J) notes a(J)/J if j 3 otherwise (J)

Gj " denotes Kronecker's $-symbol.

’

B(f) denotes some variable which is bounded above in absolute value by f.
E.g. sin(x) = B(1). It is used in the same (questionable) manner as the
Landau-Bachman (-symbol, with the difference being no multiplicative con-

stant is involved.

[0 denotes the end of a proof.

2.2, Various (in-)equalities

Since we prefer not to interrupt the proofs in the subsequent chapters
by technical details, several identities and estimates are proved in this

section for later reference.
LEMMA 2.2.1. Let x| < 1. Then

log(l+x) = x-—%x2-+%x3(1+3(|xl))—l-

PROOF. For x > 0 as well as for x < 0 one has

X X X
2,3 2

2 I+y
3(1+
y=0 ( y) y=0 y=
Hence
X_3 < 10g(l+x) - x % ..l_xz < lx3 D
3(14x) ~ 2. T 37 o

LEMMA 2.2.2. Let n € N. Then

1 2
—3—n (n-l),

™~
[

N
A

and



n—-1
z k3 < %nS(n—l).
k=0

PROOF. This follows from {E;é K% = %n(n—l)(Zn—l) and ZE;é K3 = %n

TEMMA 2.2.3. Let n € N and w € R. Then

n .
z sinz(km) - ln _ 51n(nm)co's((n+l)m)
k=1 2 2 sin w

k]

and

° 2 1
1 k sin“(kw) = 0 R 5
k=1 sin w 4 sin"w

provided w # 0 (mod 7).

PROOF. According to exercise no. 16 in Chapter 6 of PULYA & SZEGH
has for w # 0 (mod w):

° sin(nw)cos{((n+1)w)

z cos (2kw) = -
kel sin w
and
n . 2
J (a+1-k)cos(2ke) = 210 ((mtDw) _ ntl
. 2 2 °
k=1 2 sin"w

The two formulas in the lemma follow straightforwardly. 0

LEMMA 2.2.4. Let w > 0. Then

Lm/w]
21 sinz(kw) < —21— [n/m],
k=

mfw
LkZlJ k sinz(km) < —41— [ﬂ/m]z.

2@-n%. 0

2 _ n sin(w)cos ((a+D)w) , sin’(w) |

[21], one

PROOF. For w > m as well as for %n <w<w, the inequalities are verified

directly. If 0<wsl1r and 1/w € Z, the inequalities follow at once from

2
Lemma 2.2.3 (even with equality).

Now suppose that 0 < w < %—n and that w/w ¢ Z. Then



b

=T < 7-w < |[T/w]w<m,
s0
sin([w/m]m) < sin(r - w) = sin w.

Lemma 2.2.3 (with n = {w/w]) yields

trfw]

kzl sinz(km) < -;—[_'n/mj + —;— = -;?l"n/m],
and
Lwfw]
kgl k sin® () < gln/a)? + glu/a]+ 4 = LRI

respectively. [

LEMMA 2.2.5. Let w > 0. Then

L7/ (2w) | I I
sIn(kysin((Do) - z

k=2

PROOF. It can be assumed that w < -;—n. Let n = LTr/(Zm)J. Then

° 1

Zz sin(kw)sin((k-1)w) =

k

Izl sin(kw)cos ((k=1)w) = cos (kw) sin((k=1)w) _
B k=2 sin © sin(kw)sin((k-1)w) -

n
1
= Sin } (cot((k-1)w) - cot(kw)) =
k=2
_ cot w - cot(nw) _ 1 < 0
sin w ~ sin w tan w "mZ'

In the next lemma, Bk denotes the k-th Bernoulli number, as defined in

WHITTAKER & WATSON (321, §7.2. In particular, B, = 1/6, and B, = 1/30.

1 2

LEMMA 2.2.6. Let n € N, and v > 0. Then

-1yt
log (%ZIV)?)' -



k, k ® t
n  (~1)" (4 l)Bk -D uanu e
2n-1 2 2 sinh(wt) °
v u +v

t=0 u=0

=-1 log(—;-v) +

2 k=1 (2k)(2k-1)v2E"!

Moreover,

n (-1)“(4“—1)3k

1
log(zv) + | —
2 k=1 (2k)(2k—l)v2k !

18 an upper (a lower) bound for log S%¥5%%i if n 18 even (odd). In particular,

-1
2

(3v-1)! I I 1
log 4 = - 1 loggv) + B,
ﬂnd
Uv-p! _ _ 1 A 1
g “quyT T T2 eV T g BC -

PROOF. From Stirling's asymptotic expansion of the logarithm of the gamma

function (cf. WHITTAKER & WATSON [32], §12.33), it is known that
-1

n -7 "B

+
k=1 (2K) (2k-1)v2E~

log T'(v) = (v —%)log v—v+% log(2w) + i

® t

L, 26" uPau _de
v2n—l 2+ 2 21rt_l :
t=0 u=0 * 7V ©
Hence
log v! = log I'(v) + log v =
1 1 n 0¥
= (v+3)log v-v+5log(2m) + 21t R
k=1 (2k)(2k-1)v
where
n “ t 2n
0 = 26D u du _ dt
1= 2o 2,2 Qrme_, 7
v t=0 u=0 %V &
Moreover,
Loy
2 10g@zv)- =
k-1,2k
n -~ "2 Bk

T+ Ry

= (v+ l)1og(—lz—v) -v+ log(2m) + TTTTTTTORAT
k=1 (2k) (2k-1)v
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where
9 n,2n p F n
N -2 u du dt =
2 vzn_l 2+l 2 2‘ll't_l
t=0 u=0 © TV €
an 7 t o
_2(-D) u_ du dt
2n-1 2,42 .t
€20 u=0 u+v e -1
Hence
V! _ N 1 1]
log = log v! - 2 log(zVv)! =
l2 2
(wv! k. k
1 , : n (-1)"(4 —l)Bk
-_--TZ'log('z"\l)i-vlog?-""z"log1T+ -1 T R
k=1 (2k)(2k-1)v
where
© t
n 2n
R=R -R, = - U T .
1 2 v2n—l 2+v2 sinh(wt)
t=0 u=0 “

According to the Legendre duplication formula (cf. WHITTAKER & WATSON
[32]1, §12.15),

I‘(z)l"(z+%) = nt 21722 19y,

which transforms easily into

_l_ l__l_ ___l_,_ b v o,
(Zv).(zv y! =122 " vi.

2
Hence,
- 1 i "V‘ !
log (%Yv§2- = log E_g__é; = log - 7=V log 2 + %’103 ™=
EAR v (w!
L n D@D
= - ..2_ 10g(-—2—v) + T + Rs

k=1 (2K) (2k-1)v2%~

proving the first part of the lemma.

The upper (lower) bound follows since R is negative (positive) for n
even (odd).

The particular cases are found by taking respectively n=0, n=I, and
n=2. [



2.3. Logarithmically concave sequences

A real sequence (ai):=0 is called logarithmically concave, or briefly

logconeave, if it is weakly positive and moreover

43041 = Aeay 2

for all k € N and £ ¢ N with k < £. In this case we also say that a, is
logeoncave itn i for i € N. A trivial consequence of the definition is men-

tioned in the next lemma.

LEMMA 2.3.1. Let (ai);=0 be logeconcave. Then

<
2 8pys < Ay
for all j e N, ke N, and £ ¢ N with k < £.
PROOF. By induction with respect to j. [

In the definition we adopted, zero terms are allowed. These can occur
however only at the beginning or the end of the sequence, as is shown by

the next lemma.

LEMMA 2.3.2. Let (ai)o.:=0 be a real sequence. Then it ig logconcave if and
only if the following three conditions are satisfied:

1, aiZOforaZZie N;

2.1f ke N, £ ¢ N, a > 0, and a, > 0, then a; > 0 for atl i € [k,1,£3;

2 .
8. a;y za; . a; for all i ¢ N\ {0}.

PROOF. Suppose that (ai)c.:=0 is logconcave. Then the first and third

condition are obvious. The second condition follows from Lemma 2.3.1:

0 <agay<aa g

provided i € [k,1,£].
Next suppose that the three conditions are met. Suppose that k ¢ N,
< <
£ € N, and k < £. It should be proved that aap.; <3, 3.
1f a3 = 0, the assertion is obvious, so it can be assumed that

a > 0 and 3, > 0. But then a; > 0 for all i e [k,1,£+1]. Also



£ 2 a £-1
I a;> T (a, .a, ) =aa  aa il a,,
fokdl b i=kel i+17i-1 A k1202041 joke2 *

SO

Uee12e 2 APpar
which was to be proved. [

It is obvious from the definition that the product of two logconcave

sequences 1s again logconcave.

LEMMA 2.3.3. Let (ai)i=0 and (bi)i=0 be logconcave sequences. Then (aibi)i=0

¢ logeoncave as well.

It is less obvious that the convolution product of two logconcave se-—

quences is again logconcave. This is stated in the next lemma.

LEMMA 2.3.4. If the coefficiente of the power series f and g both form log-
concave sequences, then the coefficients of the Cauchy product fg form a

logeoncave sequence as well.

bixl, and (fg) (X) = bl c Xk. Then

© i o
PROOF. Let £(X) = I, o a; X, g(X) = I, _, k=0 "k

_ vk . © X
¢ = Zi=0 aibk-i' It can easily be checked that (ck)k=0 meets the first two
conditions of Lemma 2.3.2. Next, define a_ = b_l = 0. From the logconcavity

of (a]._)i=0 and (bi)i=0 it follows that

aiaj—l 2 ai—laj and bk-ibk+l—j 2 bk+l-ibk-j if i £ 3 < k+l

and
< i 1< 1 <

aiaj—l < ai-laj and bk—ibk+l—j < bk+l—ibk—j if 1< 1 < k+l
for i € N, je N, and k ¢ N. Hence

2 -c ¢ =

k k+l k-1

k+l k+1 k+l1 k+1

= . : . ) - .b . . ) =
(1 albk_lszo as_Pos) (izo asb i) (jzo a5 b
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k+1 k+l

a,a, (b, .b .- b b L) =
i=0 j=0 1j-1" k-1"k+1-] Tkt+l-i k-J)

1 k+1 k+l

2 120 i=0

= (252 PpeiPiept= ~ Preat—iPp-j) *

+ a.a. . .- . =
2525 1 O Pt -1 7 Prea 1-3Pe-1)
|kl kel

7 L jzo (a3, 1 =218 OpiPraio ™ Pryr1Pk-j)

= 0.

This proves the third condition of Lemma 2.3.2. [

Finally, a more complicated result can be shown.

8

LEMMA 2.3.5. Let (B(j))._, be a logeoncave sequence, and let

=0

.

[=2
n
~18

c
k,e . . .H B(ji)’
’ Jl,...,Jc=0 i=1
Jl+...+Jc=k

Then bk c is logeoncave in k as well as in c.
td

PROOF. Since
© c

© j. il .
I b X= ] moEEOX D = (] BEXDS,
k=0 Jpseeesi =0 i=1 j=0

Lemma 2,3.4 yields that b is logconcave in k.

k,c - -

The first condition of Lemma 2.3,2 (with (ai)i=0 = (bk,c)c=0) is ob-
viously met.

Next, let c ¢ N, d ¢ N, b >0, b >0, and i € [e,1,d]. Then

k,c k,d
k.c? there should be an £ > [k/c] such that
2

B(£) > 0. Similarly, there should be an m < [k/d] such that B(m) > 0. Since
B is logconcave, and {k/d] < |k/i] < [k/i] < [k/c], this implies that

B(Lk/ij) and B([k/i]) are positive. Therefore,

according to the definition of b

be,i

v

gt (k/i) > 0 ifi]k
and

b,i > gllR/ ATk ek il il (i > 0 itk

1\
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This proves the second condition in Lemma 2.3.2.

From the definition of bk c it is clear that
9’
b = B8(3) b, _.
k,c jZO J k=-j,c~1’
so
b = J B, . = ) Y B@BGDb,_._. s
k,ctl 120 k-1,c =0 j=0 k-i-j,c-1
and
bl = I BGdb, . %= 7T BUIBb; by ooye
sC j=0 Js i=0 j___o s ’
Since bk o1 is logconcave in k, Lemma 2.3.1 yields:
9
Pri,e=1Pk=3,c-1 7 Pk, c=1Pk-i-j,c-1°
s0

©

b2 = T T B()B(G)D

b, . . =b b .
K,C i=0 j=0 k,c=1k-i-j,c-1 k,c-1k,c+]

This proves the lemma. ]

It will be obvious that for finite sequences logconcavity can be de-
fined completely analogously to logconcavity for infinite sequences, and

that similar results hold.

2.4. Three term recurrence relations

In this section, estimates are derived for the solution of a recurrence

relation of the type

F(k+1) - A(k)F(k) + R(k)F(k-1) = O,
in which R does not vanish anywhere. First, the relation is simplified by
the substitution F = gG, where g is a function which has no zeros, and
which satisfies the two term recurrence relation

glk+l) = R(k)g(k-1).

(0f course, many such functions g exist.) Now



g(k+DG(k+1) - A(k)g(k)G(k) + R(k)g(k=1)G(k-1) = 0,
S0
G(k+1) - B(k)G(k) + G(k-I1) = 0,

where

_ AlkK)g(k)
B(k) __EE'%T .

In the next four lemmas, the effect of a perturbation on the function B
is analysed. In view of later applications, k is not restricted to Z (which
is obviously allowed), but it assumes values in Z +a for some a € R. The

lemmas regain their natural form by taking a = I.

LEMMA 2.4.1. let a € R, b e Z+ a, and let F, G, A, and B be real functions
so that

F(k+1) - A(k)F(k) + F(k-1) = 0 for k € [a,l,b),
G(k+1) - B(k)G(k) + G(k-1) = 0 for k ¢ [a,l,b),

F(a-1) = G(a-1),

F(a) = G(a),

F(k) # 0 for k e [a,l,bl.
Then

G(k) = (1-y(k))F(k) for k € [a,l,b],
where

v(k) = . i???é%%:T) for k € [a,1,b],

B(k) = ) a(i) for k e [a,l,b],

iefa,l,k)
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a(k) = (A(k) - B(k))F(k)G(k) for k € [a,l1,b).

PROOF. Two identities are proved simultaneously for k ¢ [a,l,b]:

F(k)G(k=1) - F(k-1)G(k) = B(k)

and

G(k) = (1-y(k))F(k).

For k = a, the identities are obvious. Assume that they have been proved for

certain k ¢ [a,l,b). Then, by the two recurrence relations:

F(k+1)G(k) - F(K)G(k+1) =

(A(k) - B(k))F()G(k) + F(k)G(k-1) - F(k-1)G(k) =

alk) + B(k) = B(k+1),

SO

F(k+1)G(k) ~ B(k+1)

G(k+l) = 203)
- Iy (k) - 20D - (1-

This proves the lemma by induction. [

The following lemma proves that, under certain initial conditions, the
solution of a recurrence relation is strictly bounded by the solution of

another relation of the same kind.

LEMMA 2.4.2. Let a € R, b € Z+ a, and let F, G, A, and B be real functions
g0 that

]
(=

F(k+1) - A(K)F(k) + F(k-1) for k € (a,l,b),

n
o

G(k+1) - B(k)G(k) + G(k-1) for k € (a,l,b),



F(a+1)G(a) < F(a)G(a+1),

F(a+1) < G(atl),

F(k) > 0 for k € (a,l,b),

F(b) 2 0,

A(k) < B(k) for k € (a,1,b).
Then

F(k) < G(k) for k € (a,1,b].

PROOF. Two inequalities are proved simultaneously for k ¢ (a,l,b]:

F(k)G(k-1) < F(k-1)G(k),

and

F(k) < G(k).

For k = a+l, the inequalities are given. Assume that they have been proved

for certain k ¢ (a,l,b). Then

F(k+1)G(k) - F(k)G(k+l) =

= (A(k) - B(k))F(k)G(k) + F(k)G(k-1) - F(k~1)G(k) < 0.

From this it is clear that G(k+1) > 0, so

F(k+1)G(k) < F(K)G(k+1) < G(k)G(k+1),

which implies

F(k+1) < G(k+1). 0O
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In view of later applications, the following consequence of Lermma

2.4.,2 is proved

LEMMA 2.4.3. Let a ¢ R, b e Z+ a, and let F, G, A, and B be real functions
so that

F(k+1) - A(kK)F(k) + F(k-1) = 0 for k ¢ [a,l,b),

G(k+1) - B(K)G(K) + G(k-1) = 0 for k € [a,l,b),

F(a-1) = G(a-1),

F(a) < G(a),

F(a~1) 2 0,

F(k) > 0 for k € [a,l,b),

F(b) = 0,

A(a) < B(a),

Ak) < B(k) for k € (a,1,b).
Then

F(k) < G(k) for k ¢ (a,l,bl.

PROOF. It can be assumed that b = a+l, Then

F(a+1)G(a) - F(a)G(a+l) =

= (A(a) - B(a))F(a)G(a) + F(a)G(a-1) - F(a-1)G(a) < 0.

Hence

F(a+l) < G(a+l).
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At this stage, one easily checks that all conditions in Lemma 2.4.2 have

been complied with. [

Finally, an analogue to Lemma 2.4.2 is proved in which inequalities are

given at both boundaries.

LEMMA 2.4.4. Let a € R, b e Z+ a, and let ¥, G, A, and B be real functions
so that

F(k+l) - A(k)F(k) + F(k-1) =0 for k ¢ (a,l,b)

G(k+1) - B(k)G(k) + G(k-1) = 0 for k € (a,l,b),

F(a) = G(a),

F(b) = G(b),

F(k) >0 for k € [a,!,b),

F(b) =2 0,

A(k) < B(Kk) for k € (a,l,b).
Then

F(k) = G(k) for k € {a,l,b].

PROOF. It can be assumed that a < b. Let a' be the largest number in la,!,b]
for which F(k) > G(k) for k € [a,!,a']. This number exists, since F(a) = G(a).
Suppose that a' < b. Then

F(a'+l) < G(a'+l),

F(a'+1)G(a') < F(a')G(a'+1),

F(k) > 0 jor k € (a',1,b),

F(b) = 0,
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A(k) < B(k) for k € (a',1,b).

It follows from Lemma 2.4.2 (with a = a') that F(b) < G(b). This contradic-

tion shows that a' = b, proving the lemma. [J
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CHAPTER 3

KRAVEUK POLYNOMIALS

In this chapter, a number of properties of Kravguk polynomials are de-

rived, which will be used in the subsequent chapters.

e e . . v .
3.1. Definition of and relationships between Kravcuk polynomials

Henceforth, q denotes a real number greater than 1 and n denotes a
natural number.

For any k ¢ N u {~1}, the Kravouk polynomial K (of degree k and with
parameters q and n) is defined by

k . .
- iy k-], vy 0V
K, (v) jzo D@D OG0
for all v € R. In particular, Kk(O) = (q—l)k(E).

A simple expression for the generating power series exists.

LEMMA 3.1.1. Let v ¢ R. Then

) Kk(v)xk = (1+(g-DX) "V 1-x)"V.

k=0

PROOF. This follows by taking the Cauchy product of the formal power series
expansions of the factors at the right-hand side. [

From this expression, an alternative formula for Kk(v) follows.

LEMMA 3.1.2, Let k ¢ N and v ¢ R. Then

k - .
= k=i _jn-j, n-v
K, () jZo =D (I .
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PROOF .

I KX = a-xeg™ v (10"
k=0

o« ©

- 1 a0 @i = 1 AT ot -
j= 3=0 i=0
® k .. .
2 1 O HIGEHEM. o
=i j=

Lemma 3.1.2. shows that K is indeed a polynomial of degree k. The fol-
lowing lemma proves that the Kraveéuk polynomials form a family of discrete

orthogonal polynomials.
LEMMA 3.1.3. Let k € N and £ ¢ N. Then
n

I @D O R = 8 " @D

i=0

k

PROOF. From Lemma 3.1.1 one derives

[o 4] o n .
U (@D MK (x, O -
k=0 £=0 i=0

n . . . . .
§ (@-DIE U+ @-DOTT -0 1+ @-D D T Dt =
i=0 1

((q-1) (1=X) (1=Y)+ (1+(q=1X) (1+(q-DYN" =

n
= (q+q(q-l)XY)n =q" ) (E)(q—l)kkak. 0
k=0

The following lemma proves a recurrence relation valid for these

orthogonal polynomials.

LEMMA 3.1.4. Let k ¢ N and v € R. Then
(et DKy, (V) - (k+(q-l)(n—k)—qV)Kk(V)Hq-l)(n-k+l)Kk_I(V) = 0.

PROOF. Differentiate the identity
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I kWX = 1+ (10"
k=0

to X, and multiply the result by (1+(q-1)X)(1-X). One obtains

(1+(a-2%- (D% ] X! =
k=0

(+(g-DX" 7 (1-)V ((g=1) (n=v) (1-X)=v (i+(q=1)X)) =

({q-1)n-qv - (g-1)nxX) § Kk(v)xk.
k=0
Comparing the coefficients of Xk, one finds
(DK (V) + (2K (V) - (=D (k=DK, _ (v) =
= ((q-l)n-qV)Kk(V) - (q-l)nKk_](V),

from which the lemma follows at once. [

From this recurrence relation, it can be deduced that the zeros of

. v . .
successive Kravcuk polynomials are interlaced.

LEMMA 3.1.5. Let k € [0,1,n]. Then Kk has k distinet zeros in the interval
(0,n). Denoting these zeros in inereasing order by VisVoseeesVys and the
zeros of K _, by Upslns eonsty s then

Ve <ug < vy for i € (0,1,k).

1 1

PROOF. First, it is observed that

sgn Kk(O) sgn ((q~1)k(E)) =1

and

sgn K () = sgn ((-D*() = (-0,

provided k ¢ [0,1,n].
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The assertion of the lemma is trivial for k = 0, since Ko = [, Suppose

it has been proved for certain k. Then

sgn K _,(v|) = sgn K0 =1,
and

sgn K _ (v; ) =~ sgn Kk—l(vi) for i € (0,1,k),
so

sgn Kk—l(vi) = —(—l)i for i e (0,1,k].
Since Kk(vi) = 0, Lemma 3.1.4 yields

(kt DK, (v,) = =(q=D) (n-k+ DK _, (v.),

so
sgn Kk+l(vi) = -sgn Kk—l(vi) =(-D" for i e 0,1,kl.

Therefore, Kk+l has zeros in the intervals (O,V[), (vi,vi+[) for i € (0,1,k),
and (vk,n). Since Kk+l is a nonzero polynomial of degree k+l, this proves

that Kk+l has exactly k+l zeros in (0,n). Denoting these zeros in increasing
order by WisWoseees

{» ome has WSV vy <y < v, for 1 ¢ (0,1,k),

W
k+ i+l 1+l

and v, < w Therefore,

k k+1°*

LR PR P for i € (0,1,k+1),
proving the lemma by induction. [I

The following lemma proves that KravXuk polynomials are in a way self-
dual,

LEMMA 3.1.6. Let k ¢ N and £ ¢ N. Then

n
. _ n
iZO K (K, (@) = Gk,zq .
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PROOF. From Lemma 3.1.! one derives

©

) Z K, (DK, (@)x" Z K, (&) (+(a-DD" T (10t -

k=0 i=0 i=0
= (1+(g-DX" Z K, ) —%_yi .
20 1+(q-1)X
- (D" Gy ™ et =

Note that the second transition is permitted because of the integrality of

£. Otherwise, Ki(l) does not vanish for i > n. [

From Lemma 3,1.6 the following inversion formula follows by straight-
forward verification.
LEMMA 3,1.7. Let (ak)k_ and (Bi)?=0 be two real sequences. Then

n
8, = kzo a K (1) for all i e [0,1,n]

if and only if

qa, = Z 8,K, (k) for all k e [0,1,n].
1=0
Finally, a combined difference-recurrence relation for

nomials is established.

LEMMA 3.1.8. Let ke N and v € R. Then

K (v+1) = K (v) + K _ (v) + (¢-DK_, (v+1) =

PROOF. From Lemma 3.1.1 one derives

(D) - K () + K _ () + (@=DK_ (w1)X" =
k_

v+ 1

(1+(g-DX" V-V = U+ (g-DX TV -x)Y

+ X(1+ (=D V(07 + (-DXU+(g-DX Va7 -

n-v-1

(1+(q-1)X) (1-x)Ve

<((1-X) = (1+(q=DX) + X(1+(q-1)X) + (¢-DX(1-X)) = 0. O



28

3.2. The Lloyd polynomial

Henceforth, t denotes a natural number smaller than or equal to n.

The Lloyd polynomial W(n) (of degree t and with parameters q and n) is
defined by
()

)
k=0 Kk.
Obviously, W(n)

holds.

is a polynomial of degree t. The following identity

LEMMA 3.2.1, Let v ¢ R. Then
W(n+[)(v) = Kt(v-l).

PROOF. By Lemma 3.1.2 one has

MOTSNE| K (v) = 5 E A ETH ) -
k=0 k=0 j=0 I
§ jo-v E k-j n-j
= q (.") D" ) =
0 7 k=g e
£ ot nmicl
= 1 JdEHENTIEIT,
3=0 ] €]
K . _
due to the well known identity z (—l)l(?) = (—l)k(nkl). Hence
i=0

t . . .
(n+1) - _£t=3 _jom-3, mevely K (v=1).
v () jzo o7 dEHETD =k e O

v .
3.3. Properties of a Kravcuk polynomial

The values of the Kraveuk polynomial Kt are interrelated by a difference

equation.

LEMMA 3.3.1. Let v € R. Then
(Q‘l)(n'V)Kt(V+|) - (V+(q-l)(n-v)—qt)Kt(v) + vKt(v"l) =0,

PROOF. From Lemma 3.!.l one derives
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oo

) ((q-l)(n-V)K.k(vH) - (V+(q—1)(n-V)-qk)Kk(V) + ka(v-l))Xk =
k=0

n-v-1 v+1

(g=1) (n=v) (1+(q-1)X) (1-X) " = (v (q=1) (0-v)) (1+(q-DX) "V (1-x) Y +

+ @ S(U+@DDYVO0Y) (e DD 0" =

(1+(g=DX "V (10" (1) (a=v) (1-%) 2= (v+ (q=1) (a=v)) (1+(q= 1)X) (1=X) +
+ X ((q=1) (a=v) (1-X) = v(1+(g=1)X)) + v(1+(¢-DX)?) = 0. 0O

As a consequence of the above lemma, reference is made to the first

(very weak) result concerning the zeros of Kt'
LEMMA 3.3.2. K does not have two zeros which differ exactly by 1.

PROOF. Suppose that Kt(vo) = Kt(v0+l) = 0 for some vy € R. Then from the

difference equations follows that either Kt(v) = 0 for infinitely many

ve R, or - if vy € [0,1,n-1] - Kt(v) =0 for v ¢ [0,1,n]. Hence, Kt has

at least n+l zeros, which is impossible for a nonzero polynomial of degree
t <n. 0

Next, the difference equation is transformed according to the methods
developed in Section 2.4. Define the function M by

(@01, @)
DG v-D?

M(v) =
for all v ¢ (-1l,n+1).
LEMMA 3.3.3. Let v € (0O,n). Then

_ v+(g-D)(n-v)-qt (3v-1)!(in-iv-§)!
M(v+1) Z(q_];g G TUn-iv)!

M(v) + M(v-1) = 0.
PROOF. By Lemma 3.3.1 and the definition of M one has
=iv+}
2(g-1) UV L(Un={v) IM(v+1) +
- (v+(q—1)(n—v)—qt)(q-l)—iv(iv-%)!(in-iv-%)!M(V) +

+ 2(q—1)_QV+i(iv)!(in—iv)!M(v—l) = 0,
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Division by 2(q-l)_;V+i(§v)!(£n-%v)! yields the required identity. [J

It is easier to work with (q-1)n/q-v than with v. Therefore, define

by

q

and the functions N and C by

N(x)

M(v),

and

C(x) = Ylqzl) (n-v)-qt Gv=-$) ' Un-jv-)!
2(q—[)£ (iv)!(%n—iv)!

for all v ¢ (O,n).

LEMMA 3.3.4. Let v € (O,n). Then

N(x+1) = C(x)N(x) + N(x-1) = 0.
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CHAPTER 4

PERFECT CODES AND KRAVEUK POLYNOMIALS

This chapter contains a number of known results appertaining to perfect
codes, which will be used in the subsequent chapters. A short proof of Lloyd's
theorem will be presented. The proof is based on the linear programming bound,
which will also be derived.

First, some basic concepts concerning block codes will be surveyed. For
a thorough treatment of the subject, the reader is referred to MACWILLIAMS
& SLOANE [201].

4.1. Basic concepts concerning codes

In the previous chapter, q was permitted to be a real number greater
than 1. Henceforth, it is assumed that q is a natural number satisfying
q = 2.

Let Q be a set of q elements including a zero element 0. Q will be
called the alphabet.

A word (of length n over Q) is a sequence of n elements of Q.

The word (0)]_, is called the origin 0.

The (Hamming) distance dH(x,y) between two words x and y is the number

of positions by which they differ: if x = (xi)ril=l and y = (y )2=], then

i

dH(x,y) = |{i]i ¢ (0,1,n] A X # yi}l.

The (Hamming) weight |x| of a word x is the distance between x and the

origin:
|x| = d, (x,0).

With this distance function, the set X = Qn of all words becomes a metric

space.
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A (q-ary) code (of length n) is a subset of X. A 2-ary code is called
binary.

An element of the code is called a codeword.

A code consisting of at most one codeword is called degenerate.

The code X is called trivial.

A code is called t-error correcting if the (closed, solid) spheres of
radius t around the codewords in the metric space X are disjoint.

If the spheres form a partitioning of X, the code is called t-perfect.
A perfect code is a code that is t-perfect for some t € N.

The distance distribution of a nonempty code C is the sequence (Ai)2=0’
where Ai equals the average number of codewords at distance i from a fixed

codeword, 1i.e.

A = et T Hyly e ¢ adpy) =i} =
xeC
= ICI_II{(x,y)[x e CAyeCA dH(x,y) =1i}|.
Notice that AO = 1.

Finally, the dual distance distribution of C is the sequence (Bk);=0’

where

n
B LA,
i=0

Kk being the Kraveuk polynomial of degree k. The use of this last definition

will become clear in the next section. Notice that B, = lc].

4.2. The linear programming bound

In this section, the linear programming bound for error correcting
codes is derived by elementary means.
Suppose, without loss of generality, that Q = [0,1,q), and define the

inner product <x,y> of two words x = (xi)2=[ and y = (yi)2=[ by

n
<X,y> = .
xy> = 1 oxy;
1=1
Furthermore, let w be some primitive complex q-th root of unity. A
. . v .
remarkable relation between the "Hamming scheme" and Kravcuk polynomials

can now be established.
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LEMMA 4.2,1. Let i and k be natural numbers, and let x be a word in X = Q"
of weight i. Then

z <X,2> _
" =

zeX

[z|=k

PROOF, Without loss of generality it can be assumed that
X = (x],xz,...,xi,0,0,...,O),

with X, # 0 for h ¢ (0,1,1i].

Furthermore, let j € [0,1,k], and let h],hz,...,h be integers such

k
that

0 < h1 < h2

Ceee< hj <1< hj+1 < hj+2 <ees< hk < n,

and let D be the set of all words (of weight k) which have their nonzero co-

ordinates precisely in the positions hl’hz"“’hk' Then
P T,
z m<x,z> _ @ 171 I
zeD Z, s.ee52, €Q\{0}
Ry by
. z
. *h . .
k- k-~
= (- 1 R R Gl R Cat DR
m=1 zeQ\{0}

Hence,

k . . . .
< - - .
I ™% = ) OEHED @ k@, o
zeX j=0 J J
lz|=k
From Lemma 4.2.1 it follows that the dual distance distribution of a

code is weakly positive.

LEMMA 4,.2,2, Let (Bk){:=0 be the dual distance distribution of a nonempty
code. Then Bk 2 0 for k € [0,1,n].

PROOF, Let (Ai)?=0 be the distance distribution of the code, and let M be

its cardinality. Then
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<X z>
WKV 2>

)

n
MB, = M 1 oAk 3G) =
1=0 1=0 x,yeC zeX
d(x,y)=i lzl=k

= 7 Y WP,
zeX xeC
lz|=k

[Here x-y denotes the coordinatewise difference modulo q of x and y.1 0O

The above lemma provides a powerful tool in deriving upper bounds for
the maximum cardinality of a code of fixed length and minimum distance. In
each particular case the maximum is found by solving a limear programming
problem. This explains the name "linear programming bound'". A survey of
applications can be found in BEST [3].

Sometimes it is easier to switch to the dual LP-problem: any solution
of the latter furnishes an upper bound for the optimal solution of the pri-

mal problem. The next lemma investigates when this bound is tight.

LEMMA 4.2.3. Let (Ai)ri‘=0 and (Bk)ﬁ=O be respectively the distance distribu-
tion and the dual distance distribution of a nonempty code C. Furthermore,

let (ak)§=0 and (Bi)?=0 be two sequences of real numbers such that
n
B, = ) akKk(i) for i e [0,1,n],
k=0
@ Z 0 for ke [1,1,n],
81 <0 7Zf Ai >0 for 1iell,l,nl.
Then
aglcl = 8,
if and only if
B. = B.A, =0 | .
oy f BJ 5 for j e [1,1,n]

PROOF. Since
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) - )
a.lC] = a.B. < a, B = a, K (1A, = B.A, <
0 o0 % L0 kP T ot A T L By
< ByAy = Bge
n n
a0|C| = Bo holds if and only if kZ[ akBk = iZ[ BiAi =0. 0O

As an application of the above lemma, an inequality is derived which
was discovered by F.J. MACWILLIAMS [19] for linear codes, and later general-
ized by P. DELSARTE [5] to general codes.

LEMMA 4.2.4. (MacWilliams inequality.) Let C be a nonempty t-error correct-
ing code with dual distance distribution (Bk)E=O’ where t < n. Then there

are at least t nonzero dual distances:
[{klk e [1,1,0] A B, #0}] = ¢.
PROOF. Suppose that |{k|k ¢ [1,1,n] A B, # 0}| < t. Then a nonzero poly-

nomial y of degree less than t exists such that y(k) = 0 if k € [1,1,n]
and Bk # 0. Define

o, = Ky 2 (k) for k e [0,1,n],
and
n
B, = kZo a K (1) for i e [0,1,n].

Then, by Lemma 3.1.7,

n
_ .n

Since @ is a polynomial of degree less than 2t in k, and Ki(k) is a poly-

nomial of degree i in k, it follows that Bi =0 if i ¢ [2t,1,n].
Let (Ai)? 0 denote the distance distribution of C. Then Ai =0 if
i=
ie [1,1,2t]. Thus aij = BjAj =0 for j € [1,1,n]. Hence Lemma 4.2.3 yields
n n

k 2
0=olC| =8, = K (0) = § (MDD k vy K.
%o 0 kZO 1 Kok
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But this implies that y(k) = 0 for k ¢ [1,1,n], so vy vanishes identi-

cally. This contradiction proves the lemma. [

REMARK. The number of mnonzero dual distances is called the "external
distance" of the code. The lemma remains valid if the code is t-error de-

tecting only.

4.3, Lloyd's theorem

Lloyd's theorem states a strong necessary condition which should be
fulfilled in order that a code may be perfect. The theorem was first proved
by S.P. LLOYD [18] for binary linear codes, and later generalized by F.J.
MACWILLIAMS [19] to general linear codes; finally P. DELSARTE [5] and H.W.
LENSTRA jr. [10] proved (independently) the general theorem for arbitrary

codes. Remind that W(n) was defined in Section 3.2.

LEMMA 4.3.1. (Lloyd's theorem) Let C be a t-perfect code of length n > t.
Then the Lloyd polynomial W(n) has t distinet zeros in [1,1,n].

PROOF. Define

= (‘l’(n)(k))2 for k ¢ [0,1,n],

[*]
i}

and

™
]

n

i z @ Kk(i) for i € [0,1,n].
k=0

Then, as in the proof of Lemma 4.2.4, one finds

n

_ n
‘Z B, K, (k) = q o,
i=0

(n)

s0 Bi =0 if 1 > 2t. Furthermore, by the definitior of ¥ n and Lemma 3.1.3,

7 T @DE™ E ®))?
Bn = o ) = q-1) ) K. (k =
0 0 K “ k=0 k"
I 0§ @nk® kK, G0 = & E 5. . (M-I =
§,3'=0 k=0 R 5,31=0 30373

t N
=q¢" ¥ (Me-nI,
j=o
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and
(n) 2 t n 1.2
0 = @O = (] (D@nh.
: J
j=0
Since C is t-perfect, one has
a t n .
lel = 4% § (DD,
j=o
Hence
aglcl = B,-
Lemma 4.2.3 proves that akBk =0 for k ¢ [1,1,n]). Subsequently, Lemma
4.2.4 proves that there are at least t nonzero dual distances. Hence there
are at least t values of k for which a, = 0, so W(n)(k) = 0 for at least t

k
values of k. This proves the lemma. [J

4.4. Known results about perfect codes

Not a single nondegenerate, nonbinary perfect code correcting at least
three errors is known. For binary codes, the following result was established
by A. TIETAVAINEN and A. PERKO.

LEMMA 4.4.1. The only nondegenerate perfect binary codes correcting at least
three errors are the 3-perfect Golay code of length 23 and the t-perfect
repetition codes of length 2t+1 (for any t = 3).

Proof can be found in TIETAVAINEN & PERKO [30] or in VAN LINT [16].
The uniqueness of the binary Golay code was proved by S.L. SNOVER [24].

In the course of time, several nonexistence proofs for classes of non-
binary perfect codes have been presented. The following results are due to
H.F.H. REUVERS [22] and H. LAAKSO [9] respectively.

LEMMA 4.4.2. Let t ¢ {3,4,5}, and q 2 3. Then there are no nondegenerate
t-perfect q-ary codes.

LEMMA 4.4.3. Let t 2 3, q 2 3, and let q have at most three distinct prime
divisors. Then there are no nondegenerate t-perfect q-ary codes.
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CHAPTER 5

v
LONG-WAVE KRAVCUK POLYNOMIALS

5.1. Scope

In the previous chapters, t was permitted to be a natural number less
than or equal to n. Henceforth it is assumed in addition that t 2 7 but
t # 8.

In this and the next two chapters, Kravguk polynomials of relatively
large parameter n {(compared to q and t) are considered. These polynomials
oscillate relatively slowly, explaining the title of this chapter. In Chap-
ter 8 the "short-wave polynomials" will be investigated.

To make the distinction more precise, the variable w is intrcduced

according to

- 2t+1 3
w q(z(q_l)n)

The number w will reveal itself as having connections with the "wave-number"

of the Kravguk polynomial Kt in the region of interest.
In Chapters 5,6 and 7, it will be assumed that w < 1/(2t).

In terms of n, this means that

. 28°t%(2ee)
Smrtel

In the present chapter, the weaker assumption n 2 2qt3 suffices. It becomes
apparent that under this assumption Kraveuk polynomials of odd degree are

almost antisymmetric with respect to (q-1)n/q, while Kraveuk polynomials of
even degree are almost symmetric with respect to this number. This most in-~
formal statement lacks any mathematical significance, but it is the crucial
observation which is the basis of the entire treatise. In particular, the ad-
verb "almost" will enable us to prove that the three or four zeros closest

to (q-1)n/q can never be integral simultaneously.
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. . v . .
For this purpose, some results concerning Kravcuk polynomials in a

neighbourhood of v = (g~1)n/q will be established in this chapter.

5.2. An estimate for Kk at (q-1)n/q

In this section a rapidly converging expansion for Kk(v), where v =
(g-1)n/q, will be deduced. In order to simplify notation, for each k ¢ N
the function Lk is introduced by defining

L () = -1yl 4] K, (v-5).

(The sign has been chosen in such a way that Lk(O) is positive; cf. Lemma
5.2.5.) Furthermore, for each k ¢ N and c ¢ N v {-1}, the number ak,c is
defined by

c

e = Y1 1o .

jl,...,jCZI i=1 i

Jl+...+Jc=k

LEMMA 5.2.1. Let k ¢ N. Then

4k |
L, (0) = -l CZO CONEN.

PROOF. By Lemma 3.1.1 one has

z (-1)[%k]Lk(0)Xk = (]+(q_l)x)n/q(l_x) (q—l)n/q -
k=0

((1+(q=D0 -0 He = (a0 + xa-xhr/a -

(1 (q)(—X)J + X 2 &N xyiy/a -

u

J—O =0
= f (q)-q(‘.‘"))(—xﬂ)“/q = (1- Z (j-l)(?)(—X)J)“/q =
.= j-1 5=1 h]
I e G- e =
c=0 ¢ j=1 ]
-7 “n ey g TG —1)<q y(x) b
c=0 JI, ..,J > i=1
=3 -xk 2 -n°¢

k=0 c=0
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Comparison of corresponding coefficients gives the required expression

= 1 1
for L, (0). Note that ¢ 0 if ¢ > ik. O
Concerning the numbers a oo several identities are of importance.
’

LEMMA 5.2.2. Let c € N. Then

- ("4, .a,c
a2c,c =( c )(2) ?
- o(0/ay,4yc-1 q
et e = 20D QT Do,
= (ayaye, oy dioay 2 qe -
3e2,e = () @D)e(le=3) + 5 (a=2) (e=D),
= (Mayeaye=toay ol ave oy el (ae9y(a=3) (e
Byea3,e = U 0 (a5 (a-3)(a-4) +7 (a-2)(g=3) (e=1) +
+ 9(a=2) % (e= 1) (e-2)).
PROOF.
_ (n/a - . _iveQ vy - (M/ayq5c,
Aee " (A ) o 121 (G l)(ji)) CoIGT5
JI,...,JC_
jl+"'+jc=2C
_ n/dq S s —ived vy = (/95 aye-l, ay,
a2c+l,c = ( [ ) . X . .H ((Ji I)(j.)) ( c )C(Z) 2(3)’
JI,...,JCZZ i=1 i
jl+...+jc=2c+l
_ ,n/q t s _iyved Yy o
8es2,e = Co) ) . T GG
jl,...,JCZZ
jl+"'+jc=2°+2
_ ,/q q\e-1,.q,, ¢y ,q,¢c~2, 42, .
= (D™ 3+ G 43T
c
- n/q L q =
2yee3,e = Co) ) . @G
jl,...,JCZZ
j[+...+jc=2c+3
c=-2 1,c~-3

- (/ay .. 9ye-1, 4 —1y(4 9y44 ¢ q,3
= MY e aDre e D T2DID + HHT8D). D
From these identities, some inequalities can be derived.

LEMMA 5.2.3. Let k € N, k 2 2, n 2 2qk°>. Then
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»N

e,

K, | bkJ-1 = 36q %k,|ik]
and

2

k-2, k-1 © st Lk’

PROOF. Put £ = |}k|. Then n/q-£+1 = 2k3—§k 2 2k(k2—l) > 42(4[2—1). Hence

ayp.0o1 = GO @D @D Gam + 3D ) =

n/q g2 2(q-2)L-1) _ q-2 .
< G Q) q(q-1)(n/q-L+1) g(q D < 36q 220,8°

290+1,0-1
= GO @1 Glam3) (@8) + 3(a-2) (@D EL-2) +
+ (-2’ @-2) (€-3)) =

£-1 2

< 2" DT D e areEy 7 @2 e
G0 gt © (n/q)(q) - (n/O.)(q)!' q(q-l)%f\/q-fﬁl) <

RO

aypot gt = 2GR D @ -

- 2 G e D 3q(qil)k2 IR

These inequalities prove the lemma. []

3 . . ,
LEMMA 5.2.4. Let k € N and n 2 2qk - Then (a C)Ligj 18 monotonically in—
creasing.

PROOF. The sequence (B ) deflned by B = max (0, (j- 1)(q)) is logconcave,
since it is the product of the logconcave sequences (max(O,J l)) and

q
((j))j=0 (Lemma 2.3.3). Hence, by Lemma 2.3.5, the sequence (bk,c)c=0 de
fined by
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bk’c T X j =1 i
Jl’°'°’ e

Jl+...+Jc=k

=260

i.-1@
GGy

1
is logconcave. Since finally the sequence ((néq))E;gJ is logconcave (notice
that |ik]| < n/q), and a .= (n(/:q)bk o? it follows that the sequence
k] . > H .
(ak,c)c=0 is logconcave. Together with ak,[ékj—l < ak,[%k] if k 2 2 (Lemma
5.2.3), this yields the assertion of the lemma. [J]

The Lemmas 5.2.1 and 5.2.4 combine into the following result.

LEMMA 5.2.5. Let k ¢ N and n = 2qk>. Then

°F L) T Ll RO A

5.3. An estimate for K in a neighbourhood of (q-1)n/q

In this section, the results of the previous section are extended to
an estimate for Lk in a neighbourhood of 0. For that purpose, define the

functions Xj for j ¢ N by

T AGxd = (1+(g-DXXU-%) X,

j=0

LEMMA 5.3.1. Let k ¢ N and x ¢ R. Then
Lo = ol T Ml o
k i20 k-j X R

PROOF. By Lemma 3.1.1 one has

) (-l)“k]Lk(x)xk - (1+(q=1)x) ™ THE (g (@ Dn/ax _
k=0

(1+(q—1)X)"(1—X)"‘(1+(q—1)X)“/q(1—x)(q")“/q =

@) A, (0)xd) ¢ ) (-l)rij]L.(O)Xj).
j=0 J j=0 ]

This proves the lemma. [J

Concerning the functions Ak’ several identities and inequalities will

be needed.

LEMMA 5.3.2. Let x ¢ N and k ¢ N. Then
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X k-1, %, j
Xk(x) = .Z (k_j)(j)q = 0,
j=0
AO(X) =1,
Al(x) = gx,
1 1 22
kz(x) = qxgzq(x—l)+l) < >9°x,
1 22 1 2 1 2 1 33
Ay(x) = ax(zq'x" - a4 x+ 39 + qx q+ 1) < ga’x,

1 22
Ak+2(x) < 74 X Ak(x).

PROOF. By the definition of Ak’ it is known that

@

] A @x = (X007 = T H@olanT -
k=0 3

j=0
- I Gaod 1 Cheots §T GAEThaR™ -
j=0 ] i=0 j=0 i=0 ]
@ k
= k k-1, ,x j
L X jzo GhH e,

Comparison of corresponding coefficients yields the expression for Ak(x).
The identities and inequalities for Ao(x), Al(x), Az(x), and X3(x) follow
straightforwardly.

Furthermore, from the power series expansion
T oA XS = (1+(-DOFU-0)7F,
k
k=0
it follows that the sequence (Ak(x)):=0 is logconcave (cf. Lemma 2.3.4).

This proves the last inequality. [

Next, it will be proved that - under certain conditions - the expansion
for Lk(x) given in Lemma 5.3.1 can be decomposed into two alternating series

in which terms increase monotonically in absolute value.

LEMMA 5.3.3. Let j,k,x € Ny, 2<j <k, n=2qk>, and 1 < x < k. Then

0 5 N yyp (0L, (0) < AL GOL,(0).
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PROOF. By Lemmas 5.2.5 and 5.3.2, it suffices to prove that

l—qzxza < a - a
2 =2, L3 1-1 7 %5,043)  GaL -

By Lemma 5.2.3 it is known that

<L
23,1801 T 36 25,1450

and also that

2.2
1 22 q x 2
- . . £ ——%——> a. .1 £ = a. P
2q x aJ_Z’I.%J.I_I 3q(q—l)k2 aJaI.%J.I 3 J’L%JJ

This proves the lemma. [J

Finally, an upper bound is established for Lk(x) in the case of k

being odd.

LEMMA 5.3.4. Let £,x ¢ N, x < £, and n = 2q(2£+l)3. Then
L (x) < 7 a (32-4x%)
2041 = 77980 ¢ :

PROOF. By Lemma 5,3.1 one has

20+1

Lyp, 0 = DF b oltih,, . o @) =
- e (T entag, oL, © - I b (L, (0))
- %o 28-21 %2441 ;& ) Agp-zia1 (g3 (0D,

By Lemma 5.3.3, in both series on the right-hand side the terms alternate
in sign, and increase in absolute value. Hence, from Lemmas 5.3.2, 5.2.5,
5.2,2, and 5.2.3 it follows (notice that a0 p 2 0 because of £ < n/q)

?
that

L2£+l(x) < Ao(x)L2£+](O) - A](x)Lze(O) + A3(x)L2£_2(0) <

< a - gqx(a -a )+ l—q3x3a
T T2+ 1,L 28, “2£,8-1 4 28-2,8~1

2(q-
2( (q32)£ lq3x3 1

-2
- ax(1-925 + 2 )
v 6a(q-1)£>

A
[
IA
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IA

2 1
ayp g G = 1 @ + g7 (@D <

IA

17
7E-q32£,£(3£—4x). 0

5.4, The central zeros

In this section, the results of the previous two sections are used to
prove that any Kravguk polynomial of odd degree has a zero very close to v,
For Kravguk polynomials of even degree, a related result will be deduced.
The results will be formulated in terms of the function N, defined in Sec~

tion 3.3.
LEMMA 5.4.1. If t 28 odd, then Lt has a zero in the interval [0,}(t-1)1].

PROOF. By Lemma 5.2.5, Lt(O) > 0, while Lemma 5.3.4 yields that
Lt(§(t—])) <0. O

LEMMA 5.4.2. Suppose that t is even. Then
Lt(%t-l) < Lt(it—z).

Moreover, Lt has a zero in the interval [-1,}t-2] or
Lt(—l) < Lt(O).

PROOF, Lemma 3.1.8 is easily transformed in terms of Lt:
Lt(x+l) - Lt(x) = Lt_](x+l) + (q-l)Lt_l(x).

Lemma 5.3.4 proves that both terms on the right-hand side are weakly nega-

tive for x = it-2 (recall that t = 10). Hence
L (de=1) < L (3£-2).

It is also known that Lt_l(O) > 0 by Lemma 5.2.5. Two possibilities
are distinguished:

l. L_ (=) = 0. Then L_(0) = L (-1) = 0.

2. Lt_l(-l) < 0. Then Lt-l must have at least two zeros in the interval
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[~1,3t-2]. Hence, by the interlacing property of the zeros of KravXuk poly-

nomials (Lemma 3.1.5), Lt must have a zero in that interval. [

The last two lemmas combine into the following result.

LEMMA 5.4.3. At least one of the following two alternatives holds:
1. Lt has a zero in the interval [-1,}(t-1)]1;
2.t 210, L (~1) <L (0), and L_(4t-1) < L _(}t-2).
t t t t
If the second alternative holds, it is obvious that there is an
X, € [-4,4(t-3)] such that Lt(xo-i) = Lt(x0+%), which means that L, behaves
like an even function in a neighbourhood of Xy in contrast to the first

case, where Lt behaves more like an odd function. We shall need a related

result concerning the function N rather than Lt'
LEMMA 5.4.4. At least one of the following two alternatives holds:
1. there is an X, P [-1,4(t-1)] such that N(xo) = 0;

2. t 2 10 and there is an X, € [-4,3(t-3)] such that N(xo—é) = N(x0+i).

PROOF. From the definitions of N, M, and L, it follows that

(q-l)gvK 8] (-l)[%t](q-l)%vL (x)
N(x) = M(v) = t = t
(Gv-3)tUn-1v-D1 D On-lv-Dr

where v = (gq-1)n/q-x.
If the first alternative in Lemma 5.4.3 holds, X, is chosen such that
Lt(xo) = 0. This proves the lemma in this case.

Suppose that the second alternative holds. Due to Lt(-l) < Lt(O) and

Lemma 2,2,6 one has

(q-

])%(q-l)n/q+§Lt(_l)
Ol n/QT0n/e-D T ©

oMy -

. ])i(Q"])n/th(o)

(q-
U(g=Dn/g-H! . Un/g=D! | 0k
“GtEDaloT Gl 48O @D TR DT

Ga-Da/ /o te-nien o) = nlttho).

I

IA

Due to Lt(it-l) < Lt(it-z) and Lemma 2.2.6 one has
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ity 2
CDTNGED = e To T e e D T -

((a-Dn/g-tesd)t | Un/arbe=D! (o 1)n/q- -yh
< Wenafaten? * Uaferent - Glaba/aterd e =

(q—l)é(q_l)n/q_%tHLt(%t—Z)

((q-Dn/q- i+ D T (n/g+it-1) !

- - 1
< (%(q—l)n/q-£t+l)%(%n/q+%t'l) £(q-l) %(-l)r’t]N(it-Z) <
< (—l)r%t]N(it—Z).

since it-1 2 0.
Thus, it has been proved that N(x+}) - N(x-}) assumes weakly positive
as well as weakly negative values for x e [~4,i(t-3)]. So an X € [-1,i(e-3)]

exists such that N(x0+£) = N(xo-é)- O

In the subsequent chapters, we shall speak about "odd", resp. "even"
v . . .
Kravcuk polynomials, whenever alternative I, resp. 2 holds in the last
lemma. Notice that a Kravguk polynomial of odd degree is odd, but that is

v . .
has not been proved that a Kravcuk polynomial of even degree is always even.
5.5. Assumptions

We conclude this chapter by a survey of all assumptions made up to now,
and the introduction of two new assumptions.

The variables q, n, and t have been assumed to satisfy q e N, q 2 2,
ne N, te N, t=27,t#8, and t < n.

Henceforth, it is assumed in addition that q 2 3, and that a t-perfect
g-ary code of length n+l exists.

Lemmas 4.,3.1 and 3.2.!1 yield in this case that Kt has only integral
zeros. The restriction q 2 3 is harmless, because of Lemma 4.4.1.

Moreover, it is assumed that w < 1/(2t), but in Chapter 8 this assump-
tion will be replaced by its counterpart w > 1/(2t). Recollect that w was
defined in Section 5.1.

The aim of the next three chapters is to prove that either set of as-—

sumptions is inconsistent.
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CHAPTER 6

0DD KRAVEUK POLYNOMIALS

In this chapter, very accurate estimates for the distances between the
three central zeros of an odd Kravouk polynomial will be derived. These
estimates will be used to prove that the 2eros cannot be integral simul-
taneously.

In this chapter, it is assumed that w < 1/(2t), and that in Lemma
5.4.4 the first alternative holds.

This implies that odd Kravguk polynomials with a degree of at least
seven, and with relatively large parameter n are considered. For a list of

applicable assumptions, the reader is referred to Section 5.5.
6.1. The function C

The first goal is to derive an accurate estimate for the function C

introduced at the end of Section 3.3 by

- v(g-D(n-v)—qt  (Jv=$)!(4n-jv-4)!
€0 RN B e (o DL

where x = (q-1)n/q-v.

3:33 Then
w

LEMMA 6.1.1. Let x be such that |x| <

Gv-H10n-3v-H1 _
log Tyt -

< 1o 4m2(qfl)% _ (q-2)m2x _ w? + (q2—2qj~2)m4x2
q(2t+1) q(2t+1) 2(2t+1) q2(2t+l)2
4 2 6_3 6, ,3
+ (=2 X 4(q-2)§q -q+1;w X 4 B(.o468 LIl 2 +
q(2t+1) 3q7(2t+1) (2t+1)

4 6
+ B(.0351 -“’—'l"—z) + B(.3698 “’—3).
(2t+1) (2t+1)
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PROOF. Firstly, lower bounds for n~v and v are derived. Since
20q-D’lxl 455 20 _3.55 _ .o
q(2t+1) 2e+1 © t(2e+l) O C ’
one has
2t+1) 2(q-1) 2
n_v=3+x=Lt_2_(l +_E?_t;+u;)_x) >
4 2(q-Duw 4
> 22D (1o 0339) = .4g30 LZED)
2(q-Dw (g-Duw
and
q-1 q(2t+1) 20°x
=T n-x= sz (l _q(2t+]))
> 426D (1-0339) = L4830 LD
2w w
Hence, by Lemmas 2.2.6 and 2.2.1,
(v=4)! (4n-dv-1)! _
log T Ttntv)?
1 1
= -} log(iv) - § logli(n-v)) - 5= - v7—= + B( ) + B(————————% =
4v 4(nmv) 24v3 24(n—v)
2
(2t+1) 2w x q(2t+1) Z(q—l)m X
= - log(1=52 (1 - 5251)) - | log( 1+ )) +
4mz q(2t+1) 4(q—l)w2 q(2t+1)
_ mz a - szx ) -1 _ (q-l)m2 (1 + Z(q—l)wzx)—l .
2q(2t+1) q(2t+1) 2q(2t+1) q(2t+1)
6 36
+ B( 33 P + B—— 3 =
24(.4830)"q (2t+1) 24(.4830)"q” (2t+1)
=~} log q (2t+l) mzx m4x2 +
= - : 5
16(q-1ut 9D T 20004
+ 4w6x3 Qa 2m x| ))—l _ (q—l)mzx + (q—l)2w4x2 +
3 (2e+1)° *quwn 128D 2 (o)’

363
_4(g-D7wx (
3q3(2t+l)

2
2( l)m [x},\-1 _ w
L - B( q(2t+1) ) 29y T
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_ max a - Zw Xy -1 (q-l)m
q2(2t+l)2 q(2t+1) T 2q(2t+T)
2 4 2 6
+ (g—l) w ; (+ 2(%;;1T)x)—l + B( w . -
q-(2t+1) q 24(.4830)7(2t+1)
Using
2(q-l)mZIX| -1 -1
(1 - B(W)) = (1 + B(.0339)) = 1 + B(.0351),
and a fortiori
_ 2w x| -1 _
(1 B(q(2t+l))) = 1 + B(.0351),
one finds
1o (zv-z) (dn-iv-3)!
TV) (zn“zv)'
1
- log 4m2(q-l)2 _ (q—2)w2x (q —2q+2)m x2 .
q(2t+1) q(2t+1) q (2t+l)
4(q-2)(q?—qfl)w6x3 4+.0351° |x| >
- 3 3 * B( ) - Tzey *
3q”(2t+1) 3(2t+l)
4 6
(q—2)w x + B(.035[m gd) + B(.369811)3) -
(2t+l) (2t+1) (2t+1)
- log 4w (q—l)i _ (q—2)m2x _ m2 + (q 2q+2)m4 2 +
q(2t+1) q(2t+1) 2(2t+1) q (2t+])
\ @20’ X 4(q‘2)(q 'q+‘;m <, B(. oaesﬂLJEEL—) +
q(4t+l) 3q (2t+1) (2t+1)
6
+ B(. 0351—w[—) + B(. 3698—3) 0
(2t+l) (2t+1)

Next, the other factor occuring in the definition of C(x) is estimated.

LEMMA 6.1.2. Let x be such that

(q=2)x _ ll < 3.8715 .
t wt

v+(q-1) (n-v)-qt _
2(¢-1)*

log
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q(2t+1) N (q—2)m2x _ mzt _ (q—2)2m4x2

T +
zmz(q_l)z q(2e+1) 2t+1 2q2(2t+l)2

= log

4 4 2 6 3
. (-2)uw'tx _ o t s bt ((q—Z)x _ l)3(] + B(.0189)).

q2t+n?  22erD? 3@esn? O

PROOF. From the expressions for v and n-v derived in the beginning of the

proof of Lemma 6.1.1 it follows that

vi(g-1) (n-v)=-qt _

1
2(q-1)*
- q(2t+1) GL(‘ _ szx ) l(l + Z(q—l)mzx) _ mzt) -
2m2(q—1) 2 q(2t+1) 2 q(2t+1) 2t+1
2
2t+1 -2
- qé t+ )_ (1 + ;L:[ a t)x - ).
2w (q-1)? 1
Hence, by Lemma 2.2.1,
log V+(q-1)(an)‘qt -
2(q-1)°
2 4 2
= log q§2t+])i + ;;:i ((q—i)x Sy -t , ((q—i)x _ ])2 +
20°(q-1) 1 2(2t+1) 1
6 3 2
+ —2= 3Aq?x_U%l+miL(T?x_4»‘=
3(2t+1) 4 q
= log g(2e+l) (q—Z)mzx _ mzt _ (q-2)2m4x2 .
T
2mz(q_”2 q(2t+1) 2t+1 2q2(2t+l)2
4 4 2 6 3
s autx | wE 4wt ((q-Z)x - 1)3(1 + B(.0189)),

a2+’ 2@e? 3esn 4E

because of

2
w't |(q-2)x _ -1 _ 3.8715 . \~-1 _
(1 + B2 1|)> = (1 + Blgzrgray)
= (1 + B(.0185))"" = 1 + B(.0189). 0

By combining the Lemmas 6.1,1 and 6.1.2, an estimate for C(x) is found.
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LEMMA 6.1.3. Let x be such that |x| < 3;f5 and l(q-Z)x -
Then

log C(x) =
w4x2 + (q—2)w4(t+l)x _ w4t2
2(2t+l)2 q(2c+1)2 2(2t+l)2

= log 2 - imz +

_ 4(q2) (gP=gr D’ . w3 a2

3
- 1)°(1 + B(.0189)) +
33 (2e+1)° 3(2e+1)° Ot
|X| m4|x| m6
+ B(.0468—=—21) + B(,0351-21%L ) 4 B(.3608—2 ).

(2t+l)3 (2t+1) (2t+l)3

This sharp estimate for C(x) will be used in the next section, but

first upper and lower bounds are derived which are independent of x. Define

0 and w, by
W= .9610w
and
w, = 1.0103w
LEMMA 6.1.4. Let x be such that |w| < 3;} and I(q Dx _ II < 2:%%12. Then

2 cos w, £ C(x) £ 2 cos w

2 e

PROOF. Define 6 by

log C(x) = log 2 - 6m2.

Then
2
8 =4~ —ty (uy? + @Du Crhx 2.2
(2t+l) q
2 4 3 4.3
_4(q-2)(g"-q+)w x w t (q—2)x _ 33
3 * 3Gory ¢ 1)°(1+B(.0189)) +
q (2t+1)

+ B(.0468 “ 'x' ) + B(.0351w2|x]) + B(.369

4
2t+l))
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One has the following estimates:

4 3 4 3
w t (g-2)x _ 3 \ o W t” 3.8715.3
seTy D7(1 + B(.0189)) | < 101895y (=) <
19.71
< 19, 712t+I < seGaTy < 10939
METh 3. 55 3. 2.094
0468—7E:T— < .04685E;T (2222)° < 2, 0942t+l < 3rgey © -0100,
.035102 x| < .0351+3.550 < :l§%1 < .0090,
4
36982+ < L3698 < .0001.
16t (2t+1)
Hence,
2 2.2
6=} - 1 2(%(1)2}{2 _ 1m t . (q-Z)m (t+l)x,] _ 4(; q+Dw’x )+
(2t+1) q 3q°(t+1)(2e+1)
+ B(.1130)).
Also
0 < lw?x® < §(3.55)% < 6.3013,
0 < st < §-= .1250,
(q=2)w’ (t+1)x 3.55(t+1)
{9=2)w Le*+Dx} o 3 554(e+1) < =225 < 20286,
q 2t
4(q 2_ i 1)wPs? 4(3.55)%
0 < < ST Gy © 1401 <2
3q (e+1)(2t+1)
Hence,
g »y - 523013+ 2.0236 + 21130 L 5 0376 = 4624,
(2t+1)
and
o<y s 21250 2.02862+ 1130 oL hio1 = L5101,
(2t+1)
So
2 2
log 2 - .5101w” < log C(x) < log 2 - .4624w",
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i.e
2 2
exp(—.510Iw") < $C(x) < exp(-.4624u").
Since
exp(~.5101w2) > 1 - .5101w>
and
2 2 46240°
exp(~.4624u°) < 1 - .46240°(1 - :-E-ﬂ-) <
<1 - 46261 - 2202 <1 - 461807,
8t
one has
2 2
1 - .5100w” < §C(x) £ 1 - .4618uw".
Since
22
cos(.96100) = 1 - 5429%9141- > 1 - .46180>
and
22 22
cos(1.01030) < 1 - LI w (1.0109) w7y ¢
22 2
<1 - (t.01g3) w® (1.0[2?) ) <1 - 51012,
48t

one arrives at

2 cos(1.0103w) < C(x) < 2 cos(.9610uw).

The lemma follows by the definitions of W, and Wy 0

6.2. The functions A and B

As stated previously, N is assumed to have a zero in the interval

[-1,3(t-1)]. Denote this zero by Xg. Define y by
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y=x-x0,

and the functions A and B by

A(y) = C(x)
and
B(y) = A(-y).
In the next lemmas, it will be assumed consistently that [y| < ELQ.

w
First, the hypotheses of the Lemmas 6.1.3 and 6.1.4 are verified under this

assumption,
3 3 1 3.55
< < === - — =
lxl < Iyl + Ix4] + (=) < ==+ o —
l(q-Z)x - II < Lo iyl , (a=2)xg Joe33, 202y -
qt - qt qt T ot t

t+]) < 3.8715

1 1
mt(3.3 + w(t+l)) < B?(3‘3 e s

Hence, the next lemma follows at once from Lemma 6.1.4.

LEMMA 6.2.1. Let |yl < —53. Then

2 cos w, < A(y) £ 2 cos Wy

The next aim is to estimate A(y) - B(y).

LEMMA 6.2.2. Let y € [%,gjéﬂ. Then

log A(y) - log B(y) =

2 2.2
- Zwaty Lo 70 (Do 2,2 4la=2)(q g Dux, \
(2t+1) qt t qt(2t+l) q3t(2t+1)
- (q- Z)x
* 21£i¥3>t qt = 1)2 + B(.0358)).

(In fact, the estimate will be used only for y € [l,éigl. The larger inter-

val is taken for reasons of consistency with the next chapter.,)
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PROOF, By Lemma 6.1.3 it is known that

log A(y) = log C(x) =

Wt @Dt gy 42
= log 2 - ju" + + - +

2(2t+1)2 q(2t+l)2 2(2t+1)2

4(a=2) (aP=a+ Do’ (y+x) >

- +

3q3(2t:+1)3
6,3 ~ (¢-2)%
Pt ‘e z)y s ——2 = (1 + B(.0189)) +
3(2t+1) 4 1
w6|y+x0|3 w4|y+x0| w6
+ B(.0468 —————) + B(.0351 ———) + B(.3698 ———).
(2t+1) (2t+1) (2t+1)

This estimate even holds for all y with |y| < éié‘ Hence, for y € [iagig]s

log A(y) - log B(y) = log A(y) - log A(-y) =

4 2 6,3 .2
2@ ety | 2%y BlarD(amarDe Grvngy)
q(2t+l)2 (2t+1)2 3q3(2t+l)3
2m6t3 ((q-2)3y3 + 3(q=2)y ((q—Z)XO - ])2) +
32e+1)°  got3 qt qt
6.3 _ (¢=2)x

+ B(.0189—22 € . A i)y + - 0. I|)3) +

3(2t+1) 1 !

2w6(y+|xol)3 2w4(y+lxol)
+ B(.046B————) + B(.035l——————) +

(2t+1) (2t+1)
2w6

+ B(.3698———) =

(2t+1)

2 2,2 .2
2wty da e | Yo Ha) (a-arDo (v +3%y)
(2t+1)2 at t 3¢t (2t+1)
2.2 32 (q-2)x
wt (q-2)7y 3(q-2) 0 2
* 3 ¢ + ( - DY)+

q3t3 qt qt
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2.2 (q-2)x
. Wt (q-2)y 0 _ 3
+ B('006J(§E+l)y ( qt + 1)) +
w2(y+|xo|)3 y+ixgl
+ B(.0468-—t—(—2t+—1)-y——) + B(.0351 ty ) +
u)2
+ B(.3698—t—(m)) =
2
_ 'ty (e, To | se) @ierhu?y?
(2t+1)2 qt t 3q3t(2t+1)
2 22
_ 4(q-2)(q"-gq+w % . (q-2)3w2y2 .
t2e+1) 3¢7E (2e+1)
2 (q-2)x
(g-2)w"t 0 _ 2
q(Zer D) qt D + B(R(y)),
where R is defined by
2.2 (q-2)x
= , Wt (q-2)y 0 - 3
R(y) .0064(2“_1)y (: at + € 1{)” +
mz(y+lxol)3 y+ixgl w2
. 8 —— . . .
+ .046 t(2t+1)y + 0351 ty *+ .369 t(2t+1)y

. . . 3.3 . . . .
The function R is obviously convex on [i;jg—], so its maximum is achiev-

ed in one of the boundary points of the interval. For y = i one has
y o+ Ixgl < b+ 4(e=1) = ¢,

S0

2.2
. Wt (q-2)y
.006.,(2t+1)y ( at +

(q-2)x
0 3 1 1 e+l.3
qt 1‘) £ 000y e F e T

3
- 0063—2t43)" . o004,

16t3(2t+1)
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w”(y+lxy1) i
.046 tZtrDy < .0468T6(ZTI) < .0002,

Y+Ix0|
.0351 < .0351,
ty

2
.3698— -2 <3698 _ o001,

t(2t+l)y ~ 2t3(2t+l)

Hence,

R(}) < .0358.

For y = éié, one has y + Ixol < 3;?5, so

(a-2)%,
qt

3.

2.2
3wt (q-2)y -
0%y Co | ll)

3.2
w’t 3.8715,3 _ 1108 ;0

2
< 00833 =many Coar ) C taon S

2 3
w(y+Ix, 1) W 3.55,3 _ _.6345

.0468——— 90 " < 0468 <
0468y — = 04833 ey o) T

y+ix, |
0 3.55
0351 < 03515752 < 0054,

2

w
.3698rm'_vy < .0001.

Hence
3.3
R(T) < .0127.
Thus, it is known R(y) < .0358 for y € [i,géz], and therefore,

log A(y) - log B(y) =

< 0061,

59
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2 2.2
2ty Qa2 | Fo s Al
t

(2e+1)2 qt qt(2e+1) o e(2er1)
oy 2 (q~2)x
giéitﬂ)t < 0 - )2 + B(.0358)). O

From Lemma 6.2.2, lower and upper bounds for A(y) - B(y) are deduced.

3.3
w

LEMMA 6.2.3. Let y e [},==]. Then

A(y) > B(y).

PROOF. From Lemma 6.2.2, it follows that

log A(y) - log B(y) =

L 2ty @ |1 6.9 %) (a-2) (g®-g+ D (e=D°
(2t+1)2 qt t qt(2t+1) 4q3t3(2t+|)
- .0358) >
2w4t -2 t+l 10.89 (t-l)2 1
> = G - oy T T ) - ¢ -0358) =
e+ 4 4t7(2t+1)

4 4
2oty (L~ L1038 - .0018) - .1787) = 1194 2> 0. O
(2t+1)

v

3.
w

3]. Then

LEMMA 6.2.4. Let y e [3,

A(y) - B(y) < .2008m4y.

PROOF. From Lemma 6.2.2, it follows that

4 2
t+ - +1.2
log A(y) - log B(y) < —EELEZE-(—E1-+ %ﬁ} G RESUEC I
2t+1)
4 2
< 2wty (3t+l . (t+1) + .0358) <
(2t+1)2 2t 4t3(2t+1)

< .06230%y(1.5715 + .0032 + .0358) < .1004u’y.
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Conseqiiently, since A(y) = C(x) £ 2 by Lemma 6.1.4,

4
A = Bly) = AW - 3D < 201 - exp(-.1004y)) <

< .2008w4y. 0

6.3. The three central zeros

From Lemma 3.3.4, it is known that N is a function which satisfies

the three term recurrence relation
N(x+l) - C(x)N(x) + N(x~1) =0

Furthermore, N is assumed to have a zero in Xge It follows from Lemma

3.3.2 that N(x0+1) # 0. Hence the function F can be defined by

Then F(0) = 0, F(1) = 1, and F satisfies the recurrence relation

F(y+1) - A(y)F(y) + F(y-1) = 0,

T has integral zeros, due to the integrality of the zeros of Kt' Next,
define y, as being the smallest zero of F in the interval (O,N/wl], pro-
vided such a zero exists; otherwise, define v, = [n/w‘J + 1. Observe that

in any case F(y]) >0,

LEMMA 6.3.1.
vy, € Z,

sin(wly)

sin Wy

sin(mzy)

L]
—~
<
~

A

for y € [0,l,y1],

T
= ™ for y e [O,I,;;],

=y ® W 2
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and
i 78 the smallest positive zero of F.

PROOF. v, € Z 1is obvious from the integrality of the zeros of F, resp. of

[n/mlj + 1. Next, observe that

L m 3.3

- < e —
yl“wl 96100 - w °
so Lemma 6.2.1 yields that 2 cos W, < A(y) € 2 cos W for y € [O,I,yl).
Define the function G by

sin(m]y)

Gly) = sin :
1

Then G(0) = 0, G(1) = 1, and G satisfies the recurrence relation
G(y+1) - 2 cos Wy G(y) + G(y-1) = 0.

Now the second assertion of the lemma follows from Lemma 2.4.3 with a = 1,

b = Yo and B(y) = 2 cos wpe Since G(Ln/wlj + 1) < 0, the "otherwise'-part
in the definition of Y, does not apply, which proves v, < w/m] and the fifth
assertion of the lemma.

Defining G by

sin(mzy)
6O = -0
2
the third assertion follows in a similar way from Lemma 2.4.3 with a = I,

b= [n/wzj, and with F and G interchanged. This proves in turn that

yI 2 Tr/(uz. |

The lower bound for F which was established in Lemma 6.3.1 can be im-
proved in a neighbourhood of Y

Define

= [T
n= erl ¢
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LEMMA 6.3.2,
< I.7260 s
F(y) = .5734y for y e [0,1,n],
and
F(y) 2 ’9;82 sin(ml(yl-y)) for y e [n,l,y‘].

PROOF. First, bounds for n are derived.

T m T 1 1,7060
] 20, *lsi92200 "t S T o -

IA
3
A

So

2N < 1.0103-1.7060 < 1.7236 < w.

NTE
IA
€

-
3
IA

w

sintw,n) - sin 1.7236  .9782
B 1.0103w =~ w °?

and for y ¢ [0,1,n],

sintwyy) vy sinloym) 'y sin 1.7236 5734y
. s

sin w - w - 1.7236 -

F(y) 2
2 2"

proving the second assertion of the lemma.

Next, define the function G by

_.9782 . _
G(y) = —— sin(u (y;~¥)).
Then
Fn) 2 282 5 g,

and
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F(y) = 0 = Gy ).

Now the third assertion of the lemma follows from Lemma 2.4.4 with a = n,

b= Yo and from Lemma 6.2.1. (

In the remainder of this section, the function G is defined by

o) = £ -

Then G(0) = 0, G(1) = 1, and G satisfies the recurrence relation
G(y+1) - B(y)G(y) + G(y-1) = 0.

Furthermore, G has integral zeros. Next, define z  as being the smallest

1
zero of G in the interval (O,yl), provided such a zero exists; otherwise,

define z, =y, In any case, G(zl) > 0.
LEMMA 6.3.3.

z) € Z,

G(y) < F(y) for y e (1,1,z ],
and

z, 18 the smallest positive zero of G.

PROOF . z, € Z is obvious from the integrality of the zeros of G. Since

z <y, < 3.3/w, Lemma 6.2.3 applies. The second assertion of the lemma

1
follows from Lemma 2.4.3 with a =1, b = zps and F and G interchanged. Since

F(yl) = 0, the "otherwise"-part in the definition of z  does not apply,

which proves the third and fourth assertion of the lemma. 0

A lower bound for z, is established by applying Lemma 2.4.1.

LEMMA 6.3.4.

z, > y[-l.
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PROOF. First, the functions o, B, and y as defined in Lemma 2.4.1 are estim-—

ated. Lemmas 6.2.4, 6.3.1, and 6.3.3 yield for k ¢ [I,l,yl—l]:

. 2
4 Sin (mlk)
a(k) = (A(k) - B(k))F(k)G(k) < .2008w k
sin“w
1
Since
sin w 12 (.9610)°
Zl—gmlzl———'——z— 2.9992,
“y 24t
it follows that
. 2
sin“(w, k) 2
a(k) < .2008w4k L < -20120 g sinz(wlk) <

(.9992)2m% (.9610)

< .2179w2k sinz(mlk).

For k € [l,l,yl-l], one has by Lemma 2.2.4:

k-1

B(k) = T a(i) < .2179° ) i sin(u,i) < .2179m2-%[1142
iel1,1,k) i=1 “1

< .0545w2(§l%?2l + 1% < .0545(3.2691 + 5%92 < .6082.

For k ¢ [1,1,n], the following estimate is better (cf. Lemma 2.2.2):

k=1
B < .21790%? ] % = 217996100 %% L1 e-)? <

i=1

< .05040 K% (k~1)2.

Hence, by Lemma 6.3.2 one has for k € [1,1,n]:

B(i) L0504’ R i%G-n?

F(i)F(i-1) (.5734)2 122 1(i-1)

y(k) =
ie(1,1,k]

4 4 3

n
a533* §iG-D = L1533 3 ate) (-1 < L05110% <

i=2

1A

.0511(1.7060)°

ol < ,0182,
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For k € [n,l,yl—l], one deduces from Lemmas 6,3,2 and 2.2.5:

B(i)

v(k) - Y(n) = z e Ty S
ie(n,1,k] FRIFGE=D
Yl'[

< .6082 wZ 1

3 3 3 = <
(.9782)2  jmqep SR O mi))sine, Gy =ivD)

y.-n
% [ wr 6357

: i : < 6357 —= ——————5 <
51n(m[J)s1n(w[(J-l)) “12 (.9610)2

.6357m2

IA

j=2

A

.6884,
Hence, for k € [l,[,yl-[]:
y(k) < .0182 + .6884 = .7066.
Now Lemma 2.4.1 gives that
G(k) = .2934F(k) > O,

for k ¢ [I,1,y ~1]. Hence z, > y -1, proving the lemma. []
1 177 8

The assertions v, € Z (Lemma 6.3.1), z € Z (Lemma 6.3.3), zp <Yy
(Lemma 6.3.3), and zy > y[-l (Lemma 6.3.4) are clearly contradictory. This

proves

LEMMA 6.3.5. The assumptions made in this chapter are inconsistent.
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CHAPTER 7

EVEN KRAVEUK POLYNOMIALS

The crucial difference between odd and even Kraveuk polynomials is
that the former have a zero very close to (q-1)n/q, whereas the latter have
two consecutive zeros which are almost symmetric around (q-1)n/q. In this
chapter, very accurate estimates for the distances between these two zeros
and their "outer" neighbours will be established. These estimates will be
used to prove that the four zeros cannot be integral simultaneously.

In this entire chapter, it is assumed that w < 1/(2t), and that in
Lemma 5.4.4 the second alternative holds.

This implies that even Kraveuk polynomials with a degree of at least
ten, and with relatively large parameter n are considered. For a list of
applicable assumptions, the reader is referred to Sectiom 5.5.

Many derivations in this chapter can almost be copied from the previous
chapter, apart from some numerical constants in the estimates. In these
cases, the results will be given without further explanation, while in the
proofs only the differences with the corresponding proof in the previous

chapter will be indicated.

7.1. The function C

LEMMA 7.1.1. Let x be such that |x| < SL?S . Then
Gv-3) 1 Un-4v-4)! _
log =) TCn=gv) !
Il 4 2
_ sz(q—l)z _ (q-2)w2X o’ (q2-2q+2)w X,

= - +
log q(2t+1) q(2t+1) 2(2¢+1) q2(2t+l)2

4 2 6 3 6 3
. (g-2)w x _ 4(g-2)(q"-q*+Dw x~ B(.0343-2 |xl3) +
q(2e+1)? 33 (2e+1)3 (2t+1)
6

mhlxl w
+ B('0257""‘"72) + B(.3597——————§).
(2e+1) (2e+1)
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PROOF. This is identical to the proof of Lemma 6.1.1 apart from the follow-—

ing changes:

3.55 becomes 5.25

.0339 " .0250
.4830 " L4875
.0351 o .0257
.3698 " .3597
.0468 " L0343, [

5.55

LEMMA 7.1.2. Let x be such that ’ﬁﬂi%lﬁ -1 < _. Then

lo

vi(q-1) (n-v)-qt _
g T -
2(q-1)°?

q(2e+1) + (q—2)w2x _ wzt _ (q—2)2m4x2
2m2(q—l;¥ q(2t+1) 2t+1 2q2(2t+l)2

= log +

4 4 2 6.3
+ (@-2)w tx _  wt w t ((q—2)x _ l)3(l + B(.0135)).

qe+1)?  202e+1)%  32esn)’ 0 4E

PROOF. Apply the following changes to the proof of Lemma 6.1.2:

.0189 becomes .0135

3.8715 ., 5.55
-0185 " .0133. [
LEMMA 7.1.3. Let x be such that |x| < 2222 and I(q—z)x _ ] < 5.5
w qt wt
Then
log C(x) =
b2 4 4.2
— t
= log 2 - gmz L X 5 + (9-2)uw (t;l)x W -
2(2t+1) q(2t+1) 2(2t+1)
2 6 3 6 3 _
- datlaselle X, ot ddDx - )3+ Bo1m)) ¢
33 2e+ 1) 32e+1)3 4

m6lx|3 m4|xl w6
+ B(.0343——————§) + B(.0257——————7) + B(.3597——————§0.
(2t+1) (2t+1) (2t+1)



Define w, and w, by

9607w

€
1]

and

1,0073w.

£
]

LEMMA 7.1.4. Let x be such that |x| <
Then

5.25 (g-2)x _ ll < 5.55
w qt wt

2 cos w. < C(x) € 2 cos w -

PROOF. Apply the following changes to the proof of Lemma 6.1.4:

.0189 becomes .0135

.0468 " .0343
.0351 " .0257
.3698 " .3597
1.0189 " 1.0135
3.8715 " 5.55
19.71 " 57.76
.0939 " .1376
3.55 " 5.25
2,094 " 4,964
.0100 " .0119
. 1247 " . 1350
.0090 " .0068
.1130 " . 1584
6,3013 " 13.7813
2,0286 " 2.8875
. 1401 " .1591
.0376 n .0382
L4624 " L4618
.0101 " .0072
.5101 " .5072

.4618 " L4615



70

.9610 becomes .9607
1.0103 n 1.0073. 0O

7.2. The functions A and B

Let %, be some number in the interval [-1,}(t=1)]. (In this section

this number has no connection with the X in Lemma 5.4.4!) Define y by
y =x-x

and the functions A and B by

A(y) = C(x)

and

B(y) = A(-y).

. : . 5
In the next lemmas, it will be assumed consistently that |y| < o

First, the hypotheses of the Lemmas 7.1.3 and 7.1.4 are verified under this

assumption.
5 t=1_5 . 1 _ 5,25
Ixl < Ayl + Ixgl < S+ - < O+ qp = =0
- (q-2)x _

l(q—Z)x -1l < (g=2) Iy] + 0 _ I < £1.+ bl 1| =

qt qt qt wt t
1 1 t+1 5.55
B GE(S +olrl)) < wt & T < wt °

Hence, the next lemma follows at once from Lemma 7.l.4.

LEMMA 7.2.1. Let |yl < %. Then

2 cos Wy < A(y) < 2 cos wy-

The next aim is to estimate A(y) - B(y).

LEMMA 7.2.2. Let y e [5,%]. Then

log A(y) - log B(y) =



2ty D@ % 4(q-2)(q2_q+])m2x§
(2t+l)2 qt t
2 -
;%;ii?)t ((qqi)xo - 1)7 + B(.0262)).
PROOF. Apply the following changes to the proof of Lemma 6.2.2:

.0189 becomes L0135

.0468 " .0343

.0351 " .0257

.3698 " .3597

.0063 " .0045
3.3 " 5

.0004 " .0002

.0358 " .0262
3.55 " 5.25
3.8715 " 5.55

.1108 " .1539

.0011 n .0008

.6345 " .9927

.0061 " .0048

.0054 " .0027

.0127 " .0084, 0O

LEMMA 7.2.3. Let y e [;,g-]. Then

A(y) > B(y).

PROOF. Apply the following changes to the proof of Lemma 6.2.3:

6.2.2 becomes 7.2,2
.0358 " .0262
10.89 " 25
.1038 " L1191
.0018 " .0010
.1787 " .1262
. 1194 " .1672. 0O
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LEMMA 7.2.4. Let y ¢ [%,%]. Then
4
A(y) - B(y) < .1434w’y.
PROOF. Apply the following changes to the proof of Lemma 6.2.4:

6.2,2 becomes 7.2.2

.0358 " .0262

.0623 " .0454
1.5715 " 1.55

.0032 " .0015

. 1004 " .0717
6.1.4 " 7.1.4

.2008 " L1434, 0

7.3. The two central zeros

From Lemma 3.3.4, it is known that N is a function which satisfies the

three term recurrence relation
N(x+I) = C(x)N(x) + N(x-1) = 0.

By Lemma 5.4.4, x, can be chosen so that X € [-},4(t=3)] and

0
N(xo-é) = N(x0+5). With this choice of Xys the results of Section 7.2 can

be applied, since x, ¢ [~1,i(t=1)]. The definitions of y, A, and B are

0
adopted from that section. Since N(x0+£) # 0 (cf. Lemma 3.3.2), the function
F can be defined by

S (¢9)
FO = WDy

Then F(-{) = F(4) = I, and F satisfies the recurrence relation
F(y+1) - A(¥y)F(y) + F(y-1) = 0.
Next, define Yo as being the smallest zero of F in the interval

(0,7/(2w,)+1), provided such a zero exists; otherwise, define y, = 7/(2w ) +1.
I P 0 I

Notice that anyhow F(yo) 2 0,
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LEMMA 7.3.1.
cos(m]y)
F(y) < EGET;Zﬂj' for y e [i,l,yo],
' ™ 1.6851
Yo “ 7t bs—0>
and

Yo ie the smallest positive zero of F.

PROOF. First, observe that

T T 1 1.6851
Yo < 7w * Ve Tooim " et ° T o

5
B s

so Lemma 7.2.1 establishes that 2 cos w, < A(y) € 2 cos W) for y € [O,I,yo].
Define the function G by

cos(mly)

Gly) = cos(%m]) ‘

Then G(-}) = G(4) = 1, and G satisfies the recurrence relation
G(y+1) - 2 cos W, G(y) + G(y-1) = 0.

Now the first assertion of the lemma follows from Lemma 2.4.3 with a = §,
b = [yo—éj + 4, and B(y) = 2 cos W Since C([ﬂ/(Zwl) + 4} +4) <0, the
"otherwise"-part in the definition of Yo does not apply, which proves

Yo < n/(Zml) + 1 and the third assertion of the lemma. [

This time, a rather trivial lower bound for F suffices. Define

n=ly, - 4]+ 4.
LEMMA 7.3.2.
1.6851
n < D °

and
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F(y) = X for y e [h,1,nl.

PROOF. By Lemma 7.3.1, F is weakly positive on [},1,n]. If y e [},1,n],
then |yl € 5/w, so it follows from Lemma 7.2.1 that A(y) < 2. Hence, by
the recurrence relation derived above, F is concave on [},l,n]. Finally,

F(l) =1 and F(n) 2 0. 0O

In the remainder of this section, the function G is defined by
G(y) = F(-y).
Then G(-i) = G(}) = I, and G satisfies the recurrence relation
G(y+1) - B(y)G(y) + G(y-1) = O.

Next, define z, as being the smallest zero of G in the interval (0,y0+l),
provided such a zero exists; otherwise, define zg = y0+l. Anyhow,

~
G(zo) 0.

LEMMA 7.3.3.
G(y) < F(y) for y e [é,l,zo],

z + 1,

0 “ Yo

and
Zq 18 the smallest positive zero of G.

PROOF. First, observe that

m " 1 _1.7351 _5
Vot tE T Tmme tuw T T e T u

so Lemma 7.2.3 can be applied. The first assertion of the lemma follows
from Lemma 2.4.3 with a = 4, b = [zo—ij + 4, and F and G interchanged. Since
F([y0+§J + 1) < 0, the "otherwise"-part in the definition of zg does not

apply, which proves the second and third assertion of the lemma. [J
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A lower bound for Zg» is found by applying Lemma 2.4.1.

LEMMA 7.3.4.

PROOF. First, the functions o, B, and y as defined in Lemma 2.4.1 are esti-

mated, Lemmas 7.2.4, 7.3.1, and 7.3.3 yield for k ¢ [4,1,n-11:

4 cosz(mlk) 4
a(k) = (A(k) - B(k))F(k)G(k) < .14340 k ————— < . 1434w 'k,
cos (%m])
B) = §  a(i) < .143%% i< .07170%02,
iel4,1,k) iel4,1,n)
. 2
vy = Y =B o o7170%02 n

FOOF(i-1) (7 (D (i)

ie(4,1,k] ie(3,1,n-

< .O7l7w4y8 < .0717(1.6851)4 < .5782.

Now Lemma 2.4.1 yields that
G(k) = .4218F(k) > O

for k € [4,1,n-1]. Hence zy > n~1 > y0-2. a

Recapitulating, it is now known that N has zeros in XY, and %372
with -4 < X, < $(t-3), 0 < Yo < n/(2ml) +1, zq > 0, and -1 < Yo% < 2.

: t
Define X and Yo by

x-
1

0 = %o * $0p7%p)

and

1]

i 1
Yo z(y0+zo)-

- ! - ' 3 . ' '
Then -1 < Xy < (t-1), 0 < vy < ﬂ/(2w]) + 5 and N has zeros in X + ¥,

T 1
and Xy = Yo
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7.4, The adjacent zeros

. . . o ot o gt
In this section, Xq and Yo are chosen according to Xq X and Yo Yo»

0

N has zeros in X3+, and X3 Yo Moreover, the following inequalities con-

and yo are known.

where x) and y6 have been defined at the end of the previous section. Now

cerning x

0

LEMMA 7.4.1.

-1 < X, < i(e-1),

and

0 < Yo < l.7$01 .

PROOF. Only the last inequality needs explanation. It follows from

i

¥ 3 1.7101
Yo < 20, =

1.9214w * [ w

3
—_ <
+ 35S .

With this new choice of X5 the results of Section 7.2 are applied
again, and the definitions of y, A, and B are adopted again from that
section. Since N(x0+y0+l) # 0 (cf, Lemma 3.3.2), the function F can be
defined by

N(x

F(y) = __LN(XO“YOH)

Then F(yo) =0, F(y0+l) =1, and F satisfies the recurrence relation
F(y+1) - A(y)F(y) + F(y-1) = 0.

Furthermore, the zeros of F have integral differences with Yoo due to
the integrality of the zeros of Kt' Next, define Y to be the smallest zero
of F in the interval (yo,y0+n/m[], provided such a zéro exists; otherwise,

define Y=Y * Ln/mlJ + 1. Observe that anyhow F(y[) > 0,

LEMMA 7.4.2,

Y7V € Z,
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F(y) L —— fOI’ Yy € [yo,l,yl],

F(y) 2 _S]'.E—(uz___ for y e [}'0,1,}'0"""'/0)]],
_ M. 3.2702
Y179 = W, T w

Y, 18 the smallest zero of F that exceeds Yo

PROOF . Y{7Yg € Z 1is obvious from the integrality of the zeros of F, resp.
of [n/mlj + 1, Next, observe that

L b 3.2702

Yol < wy = 96070 - w "

A

Hence, by Lemma 7.4.1:

y.-1 < 1.7101 + 3.2702 _ 4.9803 < é_’
1 w w w w

so Lemma 7.2.1 yields that 2 cos wy < A(y) £ 2 cos Wy for y e Lyo,l,yl).

Defining the function G respectively by

sin(w, (y-y.))
6ly) = —— 0

sin W

and

sin(uw, (y-y,))

sin w
2

the second and third assertion of the lemma follow in the same way as in
the proof of Lemma 6.,3.1. Again, the "otherwise'-part in the definition of
v, does not apply, which proves the fourth and fifth assertion of the

lemma. ([

Define n by

r|=yo+|-2l:—l.
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LEMMA 7.4.3.

n-yg < liégél s

F(y) = .5844(y—y0) for y e [yo,l,n],
and

F(y) 2 '9347 sin(u, (y,-y)) for y e [n,1,y 1.

PROOF. First, bounds for n-y, are derived.

T w 1 1.6851
CE Yo fE Y VS oo "t S T w

So
g-s w (n=yy) < wy(n-yy) < 1.0073+1.6851 < 1.6975 < .

Hence, by Lemma 7.4.2,

sinw,(nmy0))  sin 1.6975 _ .9847
sin w, T 1.0073w T

F(n) 2

>

and for y ¢ [yo,l,n],

Fy) > Si“(fz(y_yo)) . (y-yo)sin(wz(n-yo))
sin w, wz(n'yo)

(y-yo)sin 1.6975
>
- 1.6975

> .5843(y—y0),

proving the second assertion of the lemma.

Defining the funmction G by

G(y) ==

sin(wl(yl-y)),

the third assertion of the lemma follows in the same way as in the proof of

Lemma 6.3.2. [

In the remainder of this section, the function G is defined by
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F(-y)
Gly) = =i,
() F(-yg-1)
Then G(yo) =0, G(y0+l) = 1, and G satisfies the recurrence relation

G(y+1) - B(y)G(y) + G(y-1) = 0.

Furthermore, the zeros of G have integral differences with Yo+ Next, define

z. as being the smallest zero of G in the interval (y,,y,), provided such
0’71

1
a zero exists; otherwise, define z2, =Y. In any case, G(zl) = 0.

LEMMA 7.4.4.

Z7Yg € Z,

G(y) < F(y) for y € (y0+l,l,zl],
and

z is the smallest zero of G that exceeds Yo-

PROOF . Z7¥g € Z follows from the integrality of the zeros of Kt' Since
2 Sy gt pmyg) € 1O 32700 49803 5 (g pommy 74,1

w w w
and 7.4.2), Lemma 7.2.3 can be applied. The second assertion of the lemma

follows from Lemma 2.4.3 with a = y0+1 and b = 2z, and F and G interchanged.

!

Since F(yl) = 0, the "otherwise'"-part in the definition of z, does not

apply, which proves the third and fourth assertion of the lemma., [J

LEMMA 7.4.5.
z > yl-l.

PROOF. First, the functions a, B, and Y as defined in Lemma 2.4.] are estim—

ated. Lemmas 7.2.4, 7.4.2, and 7.4.4 yield for k € [y0+1,1,yl—1]:

. 2
4 sin (w](k—yo))
a(k) = (A(k) - B(k))F(k)G(k) < .1434w k—.—_‘
sin"w,
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Since

sin v, 12 _ (96072

Zl—gw > 1

; > .9996,
wy 24t

it follows that

. 2
sin” (w, (k=-y,.)) 2
a(l) < . 14360 e

55 < sinz(ml(k—yo)) <
(.9996) wy (.9607)

< 155607k sinz(w[(k-yo))-

For k ¢ [y0+l,l,yl—l], one has by Lemmas 2.2.4, 7.4.1, and 7.4.2:

B(k) = ¥ a(i) < .15560° ) i sinz(ml(i—yo)) -
ia[y0+l,l,k) ie[y0+l,l,k)
k—yo—l

1556u° ] (y0+j)sin2(w ) < 15560 (dy [ + 41217 <
j=1 I 0 wy Wy

IA

2,,1.7101,3.2702 1 103:2702 1 .2 .8706.
. 1556w (2——17——(—————— + 5;;) + 1( — + 30t ) <

For k ¢ [y,+1,1,n], the following estimate is better (cf. Lemma 2.2.2):
0

k-yo-l
Bk = .1556u’u’ T (y +i)i” <
j=1
2 4.1 2 1 3
< .1556(.9607)w (§y0(k-y0) (k=yy=1) + Z(k’yo) (k=yy=1)) <

A

.0120m4(k—y0)2(k—y0—1)(3k+y0).

Hence, by Lemma 7.4.3 one has for k € [y0+l,l,n]:

B(1)
v(k) = ) et <
iE(y0+l,l,k] F(L)F(i-1)
o 20 .
_ 01204 (i-yy) “(i~yy=1) (3i+y,)

(.5844)% ie(y +1,1,n] (i-yy) iy
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03520* T 5ay#35)
j=2

.0352m4(2y0(n—y0)(n—yo+l) + (n-yo)(n-y0+l)2) =

103520" (ny ) (nmy g+ 1) (nty g +1) <

1 1
(1.6851 + EE)(I.GBSI + 2+1,7101 + 7 < .0266

1.6851

.0352 7t

(cf. Lemma 7.4.1)., For k ¢ [n,l,yl—lj one has by Lemmas 7.4.3 and 2.2,5:

A

v (k) y(n) ‘e (nz] ] F(LDF(i-1) <
3 3

.8706 _ 2 ) 1 .
(.9847)2 ie(n,1,y,-1] sin(o; (y=1))sintu, (v =i+1))

p 1 1 2 8979
89790 ] — s : < .8979 2, = 227 <

j=2 sln(m13)51n(m](3—l)) u’12 (.9607)2

.9729,

<

Hence, for k ¢ [yo+1,1,yl—l]:

v(k) < .0266 + .9729 = ,9995.

Now Lemma 2.4.1 establishes that

G(k) = .0005 F(k) > 0O

for k € [y0+l,l,yl—l]. Hence z, > yl-l, proving the lemma. [

The assertions Y17V € Z (Lemma 7.4.2), z

1
This proves

z, < Y, (Lemma 7.4.4), and z

1Yo € Z (Lemma 7.4.4),

1

LEMMA 7.4.6. The assumptions made in this chapter are inconsistent.

> yl—l (Lemma 7.4.5) are clearly contradictory.






CHAPTER 8

83

SHORT-WAVE KRAVEUK POLYNOMIALS

In the previous two chapters, it was supposed that w < 1/(2t). In the

present chapter, the nonexistence of perfect codes for which w > 1/(2t)

will be proved.

In this entire chapter, it is assumed that w > 1/(2t).
Recall that the assumptions stated in Section 5.5 still hold. In part-

icular the polynomial Kt is assumed to have integral zeros.

8.1. Some inequalities involving n, q, and t

In this section, some inequalities are established which will be used

in the subsequent sections to disprove the existence of any perfect code

satisfying w > 1/(2t). Define m by

m = n—-t+l,

The observation in the next lemma is crucial.

LEMMA 8.1.1.
qj|(;)m(j) for all j € [0,1,t].
PROQOF. Define P by
P(w) = q_tt! Kt(n—w).

By Lemma 3.1.2 it follows that

P(w) = q _
j=0 =373

t PR .
frr I EnFIETHO -

t . .
) C:l)t_J(E)m(t_J)w

50 9 (3)°
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Defining cj for j € [0,1,t] by

-1, t=j, t, (t-]
ey = EHTIGHmED,

one has

t
P(w) = § c.u,...
j=0 i
It is obvious that w(j) can be expanded in powers of w:

w = i S wk
) 7Ly TiKT

where the numbers Sj,k are integers, and Sk,k = 1, (They are called the
Stirling numbers of the first kind, cf. RIORDAN [23].) Now
¢ ' K_ sk

P(w) = jZo cj kzo Sj,kw = Zo av,

where
t

a = jzk Sj,kcj'

In particular, a_=c_= I, so P is a monic polynomial., Since P has integral

t t
zeros, it must have integral coefficients:

a € Z for k ¢ [0,1,t].

Since

it is clear that

c, € Z for k ¢ [0,1,t].

k
Hence, by the definition of )yt

qt—kl(t)m(t—k)

* for k € [0,1,t].
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The lemma follows by replacing k by t-j. [
For j=1, the lemma yields:
COROLLARY.  q] tm.

Next, the numbers c. for j e N, ke N, k < j are defined recursiv-

jok
ely by
c =.1—
j,0 3!
Cj,k = (J—k)lcm(cj,k—l’cj—l,k-l) if k # 0.
Some values of Cj x are listed in Table 8.1.1.
2
N o 1 | 2]3]4]s
1 1 - - - - -
2 1/2 1 - - - -
3 1/6 1 1 - - -
4 1/24 |1/2 |2 2 - -
5 1/12011/6 {3/2]12 12} -
6 1/720(1/24(2/3}18 {72 | 72

Table 8.1.1., The values of cj " for j < 6.
t]

Using the numbers c.
& ik

Lemma 8.1.1 can be formulated.

defined above, the following consequence of

LEMMA 8.1.2, Let j ¢ N, ke N, k < j. Then

i & G
Cley (e gym .

PROOF. For k = 0, the assertion is an immediate consequence of Lemma 8.1.1

and the definition of cj 0°
’
Suppose that the assertion has been proved for k-1 instead of k. Then

j k-1 j~k+1
d n7D,

. t t,.
T3 k-1 )
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and
i-1 k-1 (3=k)
q |°j—l,k-lt €G-n)™ .
Since
c. , t
Y S ) S
(J_k)cj Jk—1

the first relation yields

k (j—k+1)
. bt
i,k EHt

j-k

j

q

Since

c. ,t(t=j+1)m

Lk
(J-k)cj_l,k_[

q

(recall that qltm), the second relation yields

.1C. tkt . m(j—k)m
g .k~ (1)
i-k :
Hence
k (G-k+1) k (G-k)
. R tt,. . tt,.
JlSiak @7 SIS S D N
=k j-k

which completes the proof of the lemma by inductiom.

Lemma 8.1.2 will be applied only with j=6 and k=5.

COROLLARY q6|72t5t(6)m.

For each prime power pa, the number A is defined by

A = pa-l/(p-l)'

Some values of A are listed in Table 8.1.2,

k

=c. tt,.
€i,k T(3)

WG
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o
P

2|3|4|5|7'8l9|11|13|16

» |1 73| 2 [3.36 [5.06 | 4 [5.20 [8.65[10.50] 8

Table 8.1.2. The values of A (rounded to two decimal places) for

pa < 16,

Now the following lemma can be formulated.

LEMMA 8.1.3. Let p~ be a prime power dividing q. Then

PROOF. Lemma 8.1.1 with j=t yields:
t t
qt (.
. a
Since p lq, and m = n—t+l,
patln(n-l)°...'(n—t+l).

Let v be a number amongst n,n-1,...,n—=t+1 which contains the maximum num-—

ber of factors p. Then

pat - (L(t‘l)/pj+[(t-l)/pzj+...)Iv

so

n==vz pat_(t'])/(p—l) - Atpll(p_l).

It can be checked easily that p

VG ERVICE PN ‘a%T)l'z for q 2 3. O

Combination of the various estimates yields the following gemeral

result, in which n does not occur anymore.
LEMMA 8.1.4. Let p* be a prime power dividing q. Then

Ay < (130817t
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PROOF. From the assumption w > 1/(2t), it is known that

< 2q2t2(2t+[)

n =

so by the corollary to Lemma 8.1.2:

2
6 2qt° (2t+1) .6, 5
n < (T——) 72t t(6)n =
= @5° 720e" (61 (-2 (63) (-6) (e-5) (£+)® < (20)® 72me”

Hence

1.2 .2.5.8

Combination with Lemma 8.1.3 yields

A< gl 700238 . 338

8.2. The prime divisors of q

In this section it is proved that q can only contain a very limited

number of prime divisors.
LEMMA 8.2.1. q | 2520.

PROOF. Let pa be a prime power dividing q. The upper bound for A in Lemma 8.1.4

is monotonically decreasing in t for t > 7. Hence

ye (137787 g,

From Table 8.1.2 it follows that pa ¢ {2,3,4,5,7,8,9}. (Observe that
A= D 5 0% 5 8 for p* 2 16.) Hence q|5-7-8-9 = 2520, [

LEMMA 8.2.2. If t = 10, then q |120.
PROOF. Let pa be a prime power dividingq. For t > 10 it follows that

A < (13-100° 81710
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Hence pa e {2,3,4,5,8} , and consequently q |3+5:8 = 120. []

Together with H. Laakso's result, this yields the impossibility of
t =2 10.

LEMMA 8.2.3. t <10,

PROOF. Immediate from Lemmas 4.4.3 and 8.2.2. 0

The remaining.cases t = 7 and t = 9 will be treated in the next

section.

8.3, The cases t = 7 and t = 9

LEMMA 8.3.1. t # 7.

PROOF., From Lemmas 8.2.1 and 4.4.3 it follows that q = 2u°3B-5-7 with
oe {1,2,3} and P € {1,2} .
Suppose that t = 7, Then the assumption w > 1/(2t) yields

e 147% 2
-

Lemma 8.1.1 gives e.g.

q| 7m,
q2|21m(m+l),
3
q”|35m(m+1) (m+2),
q4|35m(m+l)(m+2)(m+3):

a’ |m(@+1) (@2) (m+3) (m+4) (@+5) (m+6) . .

It follows from the first, second, fourth, and last of the above re-
lations respectively that 2{m, 4|m, 8|m, and finally

270.-4|m
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In the same way it follows that

378—2|m,
and
56|m.
Hence,
q Ta—b | 782 6 1470g>
— = 2 *3 °5 |m < ———:{L— ,
720+7 4

so q < 97. This contradicts q 2 2+3+5-7 = 210. O
LEMMA 8.3.2. t # 9.

PROOF. Suppose that t = 9. Then

2
m<n < 32;i .

Lemma 8.1.1. gives e.g.
q|9m,
q2|36m(m+[),

¢ |m@+ 1) (m+2) (@+3) (+d) (+5) (w+6) (m+7) (m+8) .
Because of Lemmas 8.2.1 and 4.4.3, q should be divisible by 7. Hence,

2
5764801 = 7°|m < 32;ﬂ

b4

so q = 1872 . This implies that q = 2520 (cf.Lemma 8.2.1).

Since 9|q , it follows that 3l6|m or 316|m + 1. Hence

2
43046720 = 3'6-1 < w < 39784 o 7750640,

which is false. [
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CHAPTER 9

CONCLUSION AND DISCUSSION

In Chapters 6 and 7, it was proved that t—perfect q-ary codes of length
ntl cannot exist provided q 2 3, t 27, t # 8, t < n, and w < 1/(2¢t).

In Chapter 8, the same was proved provided q 23, t > 7, t # 8, t < n,
and w > 1/(2t).

Combination of these results with the Lemmas 4.4.1 and 4.4.2 establishes

the conclusion of this treatise.

THEQOREM. The only nondegenerate t—perfect codes with t = 3, t # 6, and t # 8
are the 3-perfect binary Golay code of length 23, and the t-perfect binary
repetition codes of length 2t+1 (for any t 2 3).

The theorem does not give a decisive answer to the existence of 1-,
2-, 6-, or 8-perfect codes. Indeed, the method applied is absolutely
worthless for single or double error correcting codes, since the correspond-
ing Kraveuk polynomials do not have enough zeros. Furthermore, Lloyd's
theorem is very weak when applied to these codes. They require a totally
different, still unknown, approach.

For 6- and 8-perfect codes, the method could work in principle, al-
though they require special treatment. According to numerical data, Lemma
7.4.5 still holds for t = 8. We are convinced that it must be possible to
prove it by sharpening the bounds. Presumbly, one must replace the approx-
imation by ordinary sine functions by 8-th degree Hermite polynomials, as
was done by E. BANNAI [1].

For 6-perfect codes, the problem is more difficult, since numerical
data show that Lemma 7.4.5 is false for t=6. Presumably, y1—2 <z < yl-l
is true instead. This will be much harder to prove, though probably still
feasible. On the other hand, it might also be possible to generalize the
method of REUVERS [22] to t=6 or even to t=8.

Finally, it can be added that the results in Chapter 8 can easily be

extended to t=6 or t=8.
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